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1 Introduction

Oscillatory motions in clouds have long been
observed in cloud field simulations and observa-
tions at multiple scales. Cumulus clouds can be
seen as a series of pulsating plumes with a period
of 10-15 minutes (Heus et al., 2009; Malkus, 1952;
Zhao and Austin, 2005a,b), which plays an impor-
tant role in understanding moist convection. On
a much larger scale, Feingold et al. (2017) have
observed that the simulated cloud size distribu-
tion oscillates over time with spectral power at a
period of approximately 80 minutes. Specifically,
they found in their simulations that xthe cloud field
alternates between a relative abundance of large
clouds breaking up into smaller plumes which
then reform into larger clouds.

Gaussian process regression provides an al-
ternate way to analyze periodic time variations
of noisy processes. Here, we will apply Gauss-
ian process regression to a large eddy simulation
of marine boundary layer clouds similar to that
modeled in Feingold et al. (2017). In Section 2
we define the time-series used to represent the
changing cloud-size distribution and briefly dis-
cuss how Gaussian process (GP) regression is
used to find periodic structure. In Section 3 we
use GP regression and a more traditional spectral
analysis to show that the large eddy simulation ex-
hibits periodicity at both 45 minute and 78 minute
timescales.

The original poster and all the code used to
produce both the poster and the figures in this
abstract are available for download from github

at https://github.com/phaustin/gaussian_

processes_ams_2018.git

2 Methods

2.1 Model Description

To obtain cloud field statistics, we analyze the
results from a high-resolution, large-eddy simula-
tion (LES) using the System for AtmosphericMod-
elling (SAM; Khairoutdinov and Randall, 2003)
based on the Barbados Oceanographic and Me-
teorology Experiment (BOMEX) case. the LES
model run has been performedwith a grid spacing
of 25 m, a time step of 1 second, over a 13 km ×
13 km× 3.2 km domain. Themodel run includes a
two-moment microphysics scheme developed by
Morrison et al. (2005a,b). Wehave also performed
a number of boundary-layer simulations as well,
and found that the results are more or less con-
sistent. For the sake of brevity, therefore, we will
focus on the analysis of the BOMEX case at the
moment.

2.2 Cloud Size Distribution

Studies have shown that satellite observations
Benner and Curry (1998); Koren and Feingold
(2011); Zhao and Di Girolamo (2007) as well as
model simulations Dawe and Austin (2012); Heus
and Seifert (2013); Jiang et al. (2008); Neggers
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et al. (2003) confirm that the cloud size distribu-
tion can be modelled by a negative-power law dis-
tribution as a function cloud cloud area a. That is,

(1) P(a) = Aa−b

where P(a) is the frequency of clouds appearing
in each cloud size bin (between a and a + da in
units of m−2, andA and b are coefficients describ-
ing the characteristics of the cloud size distribu-
tion.

FIGURE 1. A log-log plot of a sample cloud
size distribution P(a) as a function of cloud
area a. The distribution in blue denotes the
frequency of cloud samples in each bin be-
tween a and a + da. The result of the linear
ridge regression is shown as the orange line.

We then take the log of Equation (1) to obtain

(2) logP(a) = logA− b log a

which allows us to study the linear relationship be-
tween the cloud size distribution and cloud size in
terms of the slope b and interceptA. Unless other-
wise noted, we will only refer to the slope b as the
main characteristic of the cloud size distribution
P(a).

Figure 1 shows the cloud size distribution
logP(a) of the simulated cloud field 4 hours into
our BOMEX simulation. As shown, the distribution

iswell described by a linear curve, obtained by per-
forming a linear ridge regression yieldingA = 4.62

and b = −1.47.
We can then construct the cloud size distribu-

tion time series by repeating the calculation for
the slope b for the entire simulation period. That is,
we accumulate the result of the ridge regression
every minute for the entire duration of our BOMEX
simulation. The exact value ofA and b depends on
a number of factors, such as the bin size and the
definition of the cloud area, but it does not strongly
affect the oscillation of these parameters.

As we can see in Figure 2, the resulting time
series distribution of the slope parameter b is very
noisy. It is not surprising, however, both because
the underlying physical processes are stochastic,
and because the calculation of the slope parame-
ter involves uncertainties; for example, the choice
of bin size as well as the regression method (Fig-
ure 1) could easily change both the slope and the
intercept of the cloud size distribution.

There are a number of ways to remove long-
term trends in a time series data, and here we sim-
ply calculate the mean distribution curve using a
Bayesian ridge regression, representing the long-
term changes in our data (Figure 3), and subtract
the mean distribution from the time series data,
resulting in a time series distribution without any
long-term trends.

The resulting distribution (c.f. Figure 4) ap-
pears to be periodic, although it is very difficult to
isolate a single wave-like element consistent over
the entire duration of the time series. Still, it sim-
plifies the Gaussian process regression as we can
now assume that the prior distribution only needs
to represent the oscillatory nature of the time se-
ries distribution of the slope parameter b (see Sec-
tion 2.3 for more details).
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FIGURE 2. A time series distribution of the slope b of the linear fit of the cloud size
distribution P(a) using ridge regression.

FIGURE 3. Same as Figure 2, but using Bayesian ridge regression to estimate the
mean curve (orange line).

2.3 Gaussian Process Regression

Gaussian process regression is a Bayesian ap-
proach to modelling statistical distributions. A
Gaussian process is a collection of random vari-
ables, any finite number of which have a joint
Gaussian distribution. A Gaussian process is
completely specified by its mean function and co-
variance function. The mean function m(x) re-
flects the expected function value at input x:

m(x) = E[f(x)],

that is, the average of all functions in the distribu-
tion evaluated at input x. The prior mean is often
set tom(x) = 0. The covariance function k(x,x′)
models the dependence between the function val-
ues at different input points x and x′:

k(x,x′) = E[(f(x)−m(x))(f(x′)−m(x′))]

and we can finally write the Gaussian process as

f(x) ≈ GP(m(x), k(x,x′)).

The covariance between pairs of random vari-
ables is specified by the aptly named covariance
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FIGURE 4. Result of de-trending the time series distribution in Figure 2.

function k(x,x′). The most popular choice of
a kernel is the radial-basis function kernel, also
called the squared exponential (SE) kernel,

k(xi, xj) = exp

(
−1

2
d
(xi
l
,
xj
l

))
which is characterized by a length-scale parame-
ter l.

For the purpose of periodicity detection, we are
more interested in periodic covariance function

k(xi, xj) = exp

(
−2

sin2
(
π
T d(xi, xj)

)
l2

)
which is specified by a length-scale parameter l
and a periodicity T .

We can now sample the values of f at each set
of input points X∗ from the GP by sampling from
a multivariate normal distribution

f∗ ∼ N (0,K(X∗,X∗))

where f∗ = [f(x∗1), . . . , f(x
∗
n)]
>, a sample from

the distribution of functions evaluated at the cor-
responding input point.

Suppose we have made a series of noisy ob-
servations y = f(x) + ε with noise ε. Assuming
ε ≈ N (0, σ2

n), the prior for these observations be-
comes

cov(y) = K(X,X) + δ2nI

and the conditional distribution is then

f∗ | Xt,yt, X∗ ≈ N (f∗, cov(f∗)).

The posterior distribution is also a Gaussian
process with mean

m(x) = K(x,Xt)[K(Xt,Xt) + δ2nI]
−1yt.

Therefore, havingmade the initial observations
(on training sets), we can calculate the necessary
terms to obtain posterior distribution and its ker-
nel. The kernel is usually defined by a few hyper-
parameters that are inferred from the data. For
this reason, the bulk of GP regression method is
to construct the kernel from possibly a number of
covariance functions (in order to encode the prior
assumptions about the observation), and obtain-
ing the hyper-parameters from the observations.

Since this is often very challenging in a real-
world scenario, the hyper-parameters are ob-
tained by maximizing the (log) marginal likeli-
hood. The log marginal likelihood is defined as

log p(y |X) =− 1

2
y>K−1y y

− 1

2
log |Ky| −

n

2
log 2π

whereKy = K(Xt,Xt)+σ
2
nI. The first termmea-

sures how well the current kernel reproduces y,
the second term measures the complexity of the
model, and the last term is a constant used for
normalization.
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For a more proper and detailed description of
the Gaussian processes, refer to Rasmussen and
Williams (2006).

3 Results

3.1 Periodicity Detection with Gauss-

ian Process Regression

We can now apply the Gaussian process re-
gression method described in Section 2.3 to the
de-trended time series data in Figure 4. After a se-
ries of hyper-parameter optimizations, the hyper-
parameters for the posterior distribution converge
towards two periods at 78 minutes and 43.5 min-
utes. The resulting posterior distribution can be
seen in Figure 5.

The mean posterior distribution from the
Gaussian process regression is a good fit to the
de-trended time series distribution of the slope pa-
rameter b aswell as the interceptA (not shown). It
is possible to perform a fewmore iterations of the
hyper-parameter optimization, but improvements
to the periodicity estimates are small compared
to the complexity of the resulting posterior distri-
butions (c.f. Rasmussen and Williams (2006)).

Feingold et al. (2017) report that based on a
Fourier spectral analysis, two consistent peaks
are observed at ≈ 80 minutes and ≈ 15 minutes.
The former corresponds well to the mean poste-
rior distribution seen in Figure 5 at roughly 78min-
utes. We have modified the covariance function
to include an additional periodic kernel and ob-
served that it corresponds to a 15-minute period
(not shown).

However, we also find a prominent periodicity
at roughly 45 minutes. Given the discrepancy, it
was necessary to verify that the Gaussian process
regressionmethod is producing posterior distribu-
tions that correspond well to the oscillatory mo-
tions seen in Feingold et al. (2017).

3.2 Regression with Missing Data

Lastly, Gaussian process regression is a very
robust method that can be used with sparse data.
In order to show the robustness of the method,
we have repeated the regression for the cloud
size distribution time series data withmissing val-
ues. Figure 6 shows the resulting posterior distri-
butions based on the modified time series data
where some of the values are ignored entirely
from the regression process. The sample dataset
consists of 60-minute sampling periods, followed
by 30-minutes of missing data.

As seen in Figure 6, the Gaussian process re-
gression can accurately reproduce our time series
data with missing data segments. The method
yields period of 43.5 minutes and 78 minutes, and
while it is not as accurate as with all the available
data (c.f. Figure 5), the difference is inconsequen-
tial.

It is still possible to improve the accuracy of
the mean posterior distribution, but it should be
noted that these estimates are based on a dataset
with noisy data. After all, attempts to reproduce
the noisy data at the expense of computational
resources and model complexity will inevitably
model the inherent noise as well. If one is inter-
ested in extrapolating the results (e.g. for time se-
ries forecasts), this will result in a less accurate
predictions.

3.3 AUTOPERIOD Method

The Gaussian process regression method pro-
vides a robust way to identify underlying os-
cillatory motions in the presence of uncertain-
ties. However, it is necessary to confirm that
the estimated periodicity values correspond well
to those observed in Feingold et al. (2017). To
this end, we implemented the method suggested
by Vlachos et al. (2006), who use a combination
of Fourier spectral analysis and autocorrelation
function (ACF) to quantify the oscillatory motions
in the observed time series data.
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FIGURE 5. The time series distribution of the slope parameter b (blue), and the re-
sult of the Gaussian process regression, as a mean distribution of the posterior
distributions (black). The shaded region represents one standard deviation from
the average posterior distribution.

FIGURE 6. Same as Figure 5, but with missing data. The dashed red curve repre-
sents the mean posterior distribution where the data is missing from the training
set used by the Gaussian process.

Normally, Fourier spectral analysis is employed
to identify oscillatory motions in a noisy signal, as
seen in Feingold et al. (2017) in this case. How-
ever, the estimated periods become rapidly unreli-
able for large periods. This is because the period-
icity found in a periodogram (e.g. middle panel in
Figure 7) represents a periodicity bin with a range
of periods. Since the periods estimated in this ex-
ample (Figure 5) are at least 15 minutes long, we
determined that this method is rather insufficient
to identify the periodic motions in the cloud size
distribution. Also, the periodicity values that are

not integermultiples of the bin width cannot accu-
rately be determined by the Fourier spectral anal-
ysis.

On the other hand, as suggested by Vlachos
et al. (2006), the ACF can be used to detect pe-
riodicities accurately even at large periods. But it
is not sufficient by itself, mainly because the ACF
distribution does not tell much about the signifi-
cance of the peaks; for example, it is difficult to
pinpoint the most significant extrema, and multi-
ples of the estimated periods will appear as peaks
as well.
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We have applied the AUTOPERIOD approach
(Vlachos et al., 2006) for periodicity detection us-
ing a more conventional technique, whose the re-
sults are shown in Figure 7. Interestingly, themost
significant peak from the periodogram (middle
panel) is at T = 45minutes, which support our es-
timation using Gaussian process regression. We
identified 8 most significant peaks from the peri-
odogram, and located them on the ACF distribu-
tion (bottom panel). The most important periods
are the ones at the two peaks, which correspond
to T = 45 minutes and T = 78 minutes. Still, the
prominent oscillating motion in the cloud size dis-
tribution appears to be at 45-minute period, as the
78-minute period is only the 6th significant candi-
date based on the Fourier spectral analysis.

4 Conclusion

Themajor challenges in identifying the periodic
nature in cloud dynamics is twofold. On one hand,
it is very difficult to isolate and quantify the oscil-
latory motions in the observed phenomena, from
the oscillations in the cloud top heights (Heus
et al., 2009) to those in the cloud size distribution
(Feingold et al., 2017). On the other, even with suf-
ficient data, periodicity detection is not an easy
task in the presence of uncertainties.

We introduce the Gaussian process regression
as a method to identify underlying oscillatory mo-
tions for noisy data, such as the slope parame-
ter b of the cloud size distribution, motivated by
the works of Feingold et al. (2017). We found that
the Gaussian process regression is a robust peri-
odicity detection method, even with noisy, sparse
data (Section 3.2). For our BOMEX case, the most
prominent periods were at 45 and 78 minutes, al-
though the former appears to bemore significant.
We also verified this result using a more conven-
tional method (Vlachos et al., 2006), whose re-
sults were consistent (albeit less accurate) with
the Gaussian process regression.

There are a number of ways a Gaussian pro-
cess regression can be used. For example, we
have identified consistent oscillatory motions in

the individually-tracked boundary-layer cloud top
heights at periods of 14-17 minutes. The cloud top
time series for boundary-layer cloud top height is
effectively a large set of noisy, sparse data as the
cumulus cloud cores are generally short-lived but
oscillate at relatively long periods. We hope to be
able to apply the Gaussian regression method to
a number of oscillatory motions of clouds as ob-
served over a multitude of scales.
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FIGURE 7. A more traditional approach to periodicity estimation using the spectral
analysis based on Vlachos et al. (2006). a) The target time series distribution of the
slope parameter b (Section 2.2). b) The periodogram of the time series distribution,
given by the squared length of each Fourier coefficient. c) The (circular) autocorre-
lation function (ACF) of the time series distribution. The red dots represent 8 most
prominent peaks on the Fourier spectrum in b).

9


	Introduction
	Methods
	Model Description
	Cloud Size Distribution
	Gaussian Process Regression

	Results
	Periodicity Detection with Gaussian Process Regression
	Regression with Missing Data
	AUTOPERIOD Method

	Conclusion

