A novel technique is presented that removes this ambiguity using measurements from the 3 GHz Chilbolton Advanced Meteorological Radar in Southern England. By combining measurements of ZDR and the co-polar correlation coefficient (ρhv), we show that it is possible to retrieve both the relative contribution to the radar signal and “intrinsic" ZDR (ZPDRI) of the pristine oriented crystals, even in circumstances where their signal is being masked by the presence of aggregates. Results from two case studies indicate that enhancements in ZDR embedded within deep ice clouds are typically produced by pristine oriented crystals with ZPDRI values between 3 and 7 dB (equivalent to 5-9 dB at horizontal incidence) but with varying contributions to the radar reflectivity. Vertically pointing 35 GHz cloud radar Doppler spectra and in-situ particle images from the FAAM BAe-146 aircraft support the conceptual model used and are consistent with the retrieval interpretation.