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Methodology:

* Qutput from a pair of idealized CM1 (Bryan and Fritsch 2002)
simulations run to study mergers between squall lines and
isolated supercells.

o MERGER: supercell triggered 60 km ahead of a mature
squall line (Fig. 1a).
o SUPE:isolated supercell (Fig. 1b).

Introduction and background:

t= 0 min. | b) 25 % % 10 Pre—line, t= O min.

Past research has documented cases where isolated thunderstorms appear to intensify as they approach a nearby squall line,
prior to the two modes merging into a single system. This includes increases in low-level storm rotation and a relative increase in
tornado production as an isolated supercell draws close to a nearby squall line (French and Parker 2012). These observations
imply that these two storm modes may be interacting when in close proximity despite remaining separated in terms of their ap-
pearance on radar. As a first step toward quantifying the details of this interaction, the present study is employing output from
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Impact of nearby squall line on supercell evolution: Simulated radar reflectivity, vertical vorticity, and wind vectors at 1 km AGL, surface potential temperature perturbation
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Brooks et al. (1994).

Figure 3: Simulated radar reflectivity (dBZ, grey shading as shown), vertical vorticity (s”, colored shading as shown), and wind vectors at 1 km AGL, and surface potential temperature perturbation (K, contoured at -2 K (light
blue), -4 K (dark blue) and -6 K (purple)). Top panels show the MERGER simulation and bottom panels the SUPE simulation at (left to right) 45, 65, 75, and 85 minutes following supercell triggering in the respective simulations.
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tional simulations are planned that include:

* Thermodynamic profile moistened throughout the
troposphere over the first 45 minutes, and remained
nearly saturated through the merger.

* Simulating isolated supercells in time-varying background
environments based on observed and simulated pre-squall
line environments.
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and other potentially important processes.

o Combined squall line and supercell simulations that
include effects of anvil shading, surface fluxes, and
surface drag.
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* The modified environment is favorable for HP supercells
(e.g., Rasmussen and Straka 1998).
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Figure 4: Skew-T log-P diagrams, wind profiles, and hodographs depicting the 800
background environment ahead of the squall line in the vicinity of the pre-line

supercell sampled at (a) 30, (b) 45 and (c) 85 minutes after the supercell was U VA N A ANLANN/ NN NN AN A\ * Testing different storm configurations (e.g. storm motion
triggered. The green line on the left side of the plots shows the relative humidy —40 =30 -20 o n! 0 o toure ( ! % ) 20 30 40 0%, 10 20 20 20 1000 vectors, initial distances, and relative storm matu rity).
profile. These were plotted from a simulation without the pre-line supercell in P Temperature (°C) Temperature (°C)
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