Sensitivity of Simulated Great Salt Lake Effect Precipitation to the Parameterization of Microphysical Processes

John D. McMillen and W. James Steenburgh
Department of Atmospheric Sciences, University of Utah, Salt Lake City, Utah

Introduction
- Great Salt Lake Effect (GSLE) snow is a significant forecast challenge for forecasters and NWP during the cool season.
- Aciot and Steenburgh (2013) showed via simulation the GSLE event of 27 October 2010 required synergistic interaction of orography and land-surface contrasts to produce precipitation comparable to observations.
- GSLE precipitation is sensitive to moisture flux from the lake and moisture in the incident airmass as shown by Otten and Steenburgh (2003).
- We found GSLE precipitation distribution and amount was also sensitive to the choice of microphysics parameterization (MP) in the Weather Research and Forecasting (WRF) Advanced Research WRF (ARW) system.

Methods
- We simulated the 27 Oct 2010 GSLE event with the WRF ARW V3.4.
- The GSLE event occurred following the passage of a precipitation band associated with a baroclinic trough.
- Our control simulation (THOM) used the Thompson MP scheme and produced a similar precipitation distribution and amount as that derived from NEXRAD observations.
- Additional simulations used the same configuration as THOM except for the choice of Goddard (GDDN), Morrison (MORR), and WRF double moment six-class (WDM6) MP schemes.
- All simulations generated similar moisture fields after a few hours of model run time, indicating consistent synoptic situations.
- Consistency of synoptic conditions imply that GSLE precipitation distribution and amount differences between simulations were primarily caused by the choice of MP scheme.

Results
- The THOM, MORR, and WDM6 simulations all produced more mean precipitation and larger areal distributions of precipitation than the THOM simulation.

<table>
<thead>
<tr>
<th></th>
<th>Max Precipitation (mm)</th>
<th>Mean Precipitation (mm)</th>
<th>Rainfall Type</th>
<th>Precipitation Type</th>
<th>Area-avg Precipitation (mm)</th>
<th>Area-avg Precipitation (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTL</td>
<td>2.63</td>
<td>1.23</td>
<td>NA</td>
<td>7.9</td>
<td>63</td>
<td>13</td>
</tr>
<tr>
<td>GDDN</td>
<td>2.95</td>
<td>1.35</td>
<td>9.45</td>
<td>10.3</td>
<td>59</td>
<td>13</td>
</tr>
<tr>
<td>MORR</td>
<td>2.09</td>
<td>1.32</td>
<td>6.94</td>
<td>9.55</td>
<td>52</td>
<td>220</td>
</tr>
<tr>
<td>WDM6</td>
<td>5.20</td>
<td>1.58</td>
<td>22.25</td>
<td>465</td>
<td>655</td>
<td>191</td>
</tr>
</tbody>
</table>

- The choice of MP scheme causes differences in GSLE precipitation distribution and amount in two ways:
 1. differing amounts of graupel production
 2. displacement of the convergence zone due to pre-GSLE event precipitation.

Graupel Production
- WDM6 produced far more graupel and the maximum graupel mixing ratio was lower in altitude by roughly 1 km than THOM.
- Above 1.8 km MSL THOM produced slightly more rain, but below 1.8 km MSL WDM6 produced much more rain.
- The rain mixing ratio is important to consider because of its role in producing graupel.

Conclusions
- GSLE precipitation distribution and amount is sensitive to the choice of MP scheme.
- MP scheme choice affects GSLE precipitation distribution and amount by:
 1. differing amounts of graupel production
 2. displacement of the convergence zone due to pre-GSLE precipitation.