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1. Introduction 
 
Ensemble-based sensitivity analysis 
(ESA) details how changes in initial 
condition errors affect a chosen scalar 
forecast metric by utilizing background 
and forecast error from an ensemble 
sample of forecasts. ESA implies a linear 
change of a forecast metric due to 
changes in the initial conditions and can 
be used to further understand the dynamic 
evolution of errors. Ensemble sensitivity 
was first introduced by Hakim and Torn 
(2008), followed by Ancell and Hakim 
(2007) and Torn and Hakim (2008), as a 
means to examine the linear relationship 
between forecast surface pressure of an 
extra-tropical cyclone making landfall over 
Western Washington and initial conditions 
over the Pacific ocean. Further studies 
have examined the usefulness of ESA 
towards extra-tropical cyclones (Garcies 
and Homar 2009, 2010; Chang et al. 
2013), tropical cyclones (Xie et al. 2013), 
extra-tropical transition (Torn and Hakim 
2009), African easterly waves (Torn 2010), 
and mesoscale wind generation from 
synoptic scale interactions (Zack et al. 
2010).  
 
Development of ESA applications were 
explored by Ancell and Hakim (2007), 
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utilizing ESA and the ensemble Kalman 
filter (EnKF; Evensen 1994) to target 
locations where the atmosphere could be 
observed to reduce forecast uncertainty. 
Various targeting techniques have been 
employed to adaptively observe synoptic 
scale features, including the ensemble 
transform technique (Szunyogh et al. 
2000), ensemble transform Kalman filter 
(ETKF; (Szunyogh et al. 1999; Bishop et 
al. 2001; Hamill et al. 2013), conditional 
nonlinear optimal perturbations (Qin and 
Mu 2011), and adjoint methods (Langland 
and Baker 2004). Hamill and Snyder 
(2002) targeted observations to reduce 
analysis-error variance in hopes of 
reducing error at a forecast lead time 
which showed to be successful for some 
assimilation schemes but not others. 
Targeting techniques outlined by Ancell 
and Hakim (2007) require only a sample of 
ensemble members from an EnKF data 
assimilation procedure integrated forward 
with an atmospheric model. By calculating 
sensitivity and targeted regions based 
solely on sample statistics, ESA targeting 
becomes a much simpler formula than 
other targeting techniques mentioned 
previously.  
 
The goal of this study is to perform data 
denial experiments and perform ESA to 
determine if observation targeting for 
convective forecasts is feasible given the 
non-linear and binary nature of convective 
initiation (CI) and evolution within an 



ensemble of forecasts. Given that the 
expected change in forecast metric 
variance can be estimated, it is also 
possible to analyze if predictions of 
variance reduction correlate with the 
actual change in forecast uncertainty 
(variance and uncertainty are used 
interchangeably throughout this study). 
Future plans include applying adaptive 
observation targeting into a real-time 
ensemble forecasting system in use at 
Texas Tech University. With adaptive 
observing platforms available, in situ 
observations can be gathered at targeted 
locations in real-time and assimilated into 
the data assimilation scheme for 
subsequent real-time forecasts with 
reduced forecast uncertainty.  
 
2. Experimental Setup 
 
A 50-member ensemble of analyses is 
chosen from an ensemble adjusted 
Kalman filter (Anderson 2001) that utilizes 
the Weather Research and Forecasting 
(WRF) model v3.3. Three one-way nested 
domains are implemented at 36km, 12km 
and 4km grid spacing (Figure 1) with 38 
vertical levels. The Data Assimilation 
Research Testbed (DART; Anderson et al. 
2009) is employed to combine 
observations with the model state. 
Covariance localization (Anderson 2001) 
is used to reduce the effects of spurious 
covariance at a large distance from the 
observation. The Gaspari-Cohn 
localization function (Gaspari and Cohn 
1999) is chosen with a half-width of 
~300km so that the observation’s 
influence is one at the observation location 
and zero at a distance two times the half-
width following a Gaussian weighting 
function. Spatially and temporally adapting 
covariance inflation (Anderson 2009) is 

utilized to increase ensemble variance, 
accounting for model and observational 
error that may create an under dispersive 
ensemble and subsequent filter 
divergence. A 6-hour update cycle is 
performed for 24 hours from 0000 UTC 2 
April 2012 to 0000 UTC 3 April 2012 on all 
domains using observations from land-
based surface stations, radiosonde 
networks, buoys, ships, and aircraft 
measurements shown in Table 1. Doman 
one (36km) is cycled for 24 hours prior to 
the innermost domains to develop flow 
dependence.  
 
All 50 members are advanced 24 hours 
from 0000 UTC 3 April 2012 to 0000 UTC 
4 April 2012 with lateral boundary 
conditions for the outermost domain 
obtained from the Global Forecast System 
(GFS) forecasts. Boundary conditions for 
the nested domains are obtained from 
their respective parent domain. Various 
parameterization schemes are utilized to 
account for sub-grid scale phenomena, 
including Thompson microphysics, Rapid 
Radiative Transfer Model (RRTM) 
longwave radiation, Dudhia shortwave 
radiation, Kain Fritsch cumulus, Noah land 
surface, and Yonsei boundary layer 
schemes. To more appropriately represent 
convection on the innermost domain, no 
cumulus parameterization scheme is 
used. 
 
2.1 Sensitivity and Targeting 
 
Sensitivity is calculated as the linear 
regression of a forecast metric (J) to initial 
condition variable (x) (Figure 2). This is 
mathematically equivalent to,  
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The quotient of the covariance between J 
and x and variance in the initial conditions 
represents how J will change with an 
incremental change in x. A full derivation 
for (1) can be found from Ancell and 
Hakim (2007). Targeting locations are 
found through a similar derivation that is 
mathematically equivalent to Ancell and 
Hakim (2007) equation 22, 
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where 𝜎  represents the forecast metric 
variance and var(ob) is the observation 
error variance. Targeting values at 
different locations reveal that if 
observations were taken and assimilated 
into the data assimilation system, they 
would reduce the forecast variance by an 
expected amount from (2). Such a value 
would be easily computed with 
dependence only on the ensemble 
statistics between J and x and an 
assumed observational error, obtained 
from instrumentation directly.  
 
In order to correctly target a convective 
forecast, forecast parameters that are 
relevant to convection must be chosen. 
For our study, chosen forecast metrics 
included maximum reflectivity, maximum 
vertical velocity, and average 2-meter 
temperature as defined within the 64x120 
km black rectangle as seen in Figure 4. 
Maximum reflectivity and vertical velocity 
were chosen for their representation of 
large hydrometeors and strong updrafts, 
consistent with vigorous convection. 
Average 2-meter temperature was chosen 
as a benchmark variable, representing a 
more linear relationship between the initial 
condition and forecast compared to 
reflectivity or vertical velocity. It should be 
noted, however, that 2-meter temperature 

also exhibits non-linearity to a chosen 
initial condition with the formation of cold 
pools from convective storms. For 
simplicity, only 2-meter temperature is 
used as the initial condition variable, 
although it should be understood any state 
variable may be used.  
 
2.2 Data Denial Experiments 
 
In order to determine where additional 
observations will have the greatest impact 
on forecast uncertainty, a series of data 
denial experiments are set up to 
accurately choose West Texas Mesonet 
(WTM) stations that will most influence the 
chosen forecast metric. Assessments of 
expected versus actual variance reduction 
are completed by withholding observations 
from the West Texas Mesonet (WTM, 
Figure 3) in the general set of assimilated 
observations. A control run is performed 
via the data assimilation methods detailed 
previously and performing a 24 hour 
forecast initialized at 0000 UTC 3 April 
2012, integrating all ensemble members 
forward. Ensemble sensitivity and 
targeting fields are then calculated across 
the domain. The WTM station that exhibits 
the highest expected forecast metric 
variance reduction (targeting value) is 
chosen as the location to assimilate 
observations. The 2-meter temperature at 
the station is assimilated at initialization 
and a subsequent ensemble forecast is 
produced. Targeting is calculated again for 
the new ensemble forecast. This 
procedure is repeated for five stations and 
each forecast metric. The expected 
variance after each new assimilated 
observation is the sum of expected 
variance reduction for all previous stations 
subtracted from the control simulation 
variance.  



 
3. Case Overview 
 
On 3 April 2012, convection west of the 
Dallas/Fort. Worth metroplex in North 
Texas initiated a number of discrete 
supercells that produced 22 tornadoes, as 
reported by the Storm Prediction Center 
(http://www.spc.noaa.gov/climo/reports/12
0403_rpts.html). Early afternoon 
convection in Central Oklahoma forced an 
outflow boundary southward during the 
early afternoon as a dryline propagated 
eastward through Central Texas. Mean 
composite reflectivity and maximum 
vertical velocity at 00 UTC on 4 April show 
the north-south oriented convection in 
Oklahoma with the largest spread in the 
reflectivity field toward the southern 
periphery in North Texas, indicative of 
some ensemble members producing CI 
and others not (Figure 4 a, b). The two 
boundaries collided in north-central Texas 
and initiated convection at approximately 
1900 UTC 3 April 2012. The 2-meter 
temperature mean and spread fields in 
Figure 4 (c) further illustrates the 
uncertainty in the ensemble and where 
convection will occur in North Texas. The 
ensemble missed on the timing and 
placement of convection, an ideal forecast 
to improve through targeted observations. 
 
4. Results 
 
Sensitivity fields reveal features in the 
initial conditions that are related to the 
chosen forecast metric. Further 
examination is needed to understand 
whether these features are dynamically 
linked (e.g. the driving upper-level trough), 
or whether they are simply statistically 
related (e.g. a downstream ridge). Figure 
5 shows the sensitivity fields for the three 

forecast metrics chosen, maximum 
reflectivity, maximum vertical velocity, and 
average 2-meter temperature. Sensitivity 
of reflectivity and vertical velocity at 
forecast hour 24 to 2-meter temperature at 
forecast initialization (Figure 5 a, b) is 
maximized in the southeast corner of the 
domain over the Gulf of Mexico, where an 
incremental increase of 2-meter 
temperature at hour zero is associated 
with an increase in maximum reflectivity 
and maximum vertical velocity at hour 24. 
This could represent a dynamical 
relationship of advected warm air from the 
Gulf of Mexico influencing convection by 
increasing surface temperature and 
dewpoints, subsequently enhancing 
convection. A local minimum in the 
sensitivity field also exists for reflectivity 
and velocity in eastern New Mexico where 
an increase in 2-meter temperature would 
be associated with a decrease in the 
forecast metric. This signature may 
indicate that a warmer surface 
environment over New Mexico and West 
Texas could inhibit convection over 
Central Texas 24 hours later. Because 
West Texas is elevated from the Central 
Texas land height, warmer air advected 
eastward may act as a capping inversion 
at upper levels, effectively limiting 
convective development. Furthermore, a 
negative sensitivity in Central Oklahoma 
may be related to air advected via the 
outflow boundary into central Texas. A 
warmer environment in Oklahoma 24 
hours prior to CI would inhibit convective 
development according to this sensitivity 
signature. Various local minima and 
maxima throughout the domain are most 
likely due to spurious covariance 
relationships between J and x and a more 
robust experiment with multiple similar 
cases could remove such sensitivity 



values.  The average 2-meter temperature 
forecast metric is harder to analyze with 
various positive and negative sensitivity 
dispersed somewhat randomly throughout 
the domain (Figure 5 c). Some of the 
largest sensitivity values are located along 
a north-south oriented line, parallel to the 
forecast metric region, which may indicate 
the importance of day previous surface 
temperatures to convection.  
 
Targeting fields illustrate a vastly different 
picture than sensitivity, noting that 
targeted locations exist primarily along a 
north-south line over Central West Texas 
that is collocated with the position of a 
dryline at forecast initialization which are 
located away from regions of largest 
sensitivity (Figure 6). The difference in 
targeting and sensitivity fields is due to the 
inclusion of an additional covariance term 
in (2), highlighting the relationship of 
forecast metric to initial conditions in 
reducing forecast metric variance. These 
targeted locations suggest that if the 
atmosphere is observed 24 hours prior to 
CI, and those observations are assimilated 
into the forecast model, forecast metric 
uncertainty will decrease by an expected 
amount consistent with the calculations 
performed. Given the similarities of target 
regions for all metrics, this suggests the 
importance of day prior dryline positioning 
for convective initiation, which is 
reasonable given the dryline and outflow-
driven convection.  
 
To select targeted observations, WTM 
stations were chosen based on targeting 
fields and maximizing forecast uncertainty 
reduction. The chosen stations are not 
discussed further but the majority existed 
on the eastern periphery of the WTM 
array. Results of expected versus actual 

variance reduction can be seen in Figure 7 
with expected and actual variance 
displayed in red and blue, respectively. 
For each forecast metric, actual variance 
changes did not match the expected 
variance reduction of the forecast metric. 
In some cases, additional observations 
increased the forecast metric variance 
which does not match targeting theory; 
variance reduction is positive definite 
(Ancell and Hakim 2007; Torn and Hakim 
2008). For all observations assimilated, 
only average temperature experienced an 
overall reduction in variance. Maximum 
reflectivity and vertical velocity saw a 
slight increase in variance with the 
addition of five observations.  However, 
both localization and inflation can act to 
alter the actual variance reduction, which 
is not quantified and accounted for in this 
study. In addition, various assumptions 
are made in ESA and observation-
targeting theory that may not completely 
align with a convective case as has been 
presented. The forecast metric is assumed 
to have a Gaussian distribution amongst 
the ensemble members, which in this case 
is not true for either maximum reflectivity 
or vertical velocity (Figure 2 a, b). The 
scatters of maximum reflectivity and 
vertical velocity show a bimodal 
distribution of reflectivity and a lower-value 
weighted distribution of vertical velocity. 
Likewise, ESA and targeting are based off 
a linear relationship between the forecast 
metric and initial conditions. If the 
distribution of the metric is bimodal, a 
linear regression of the two variables will 
not correctly identify the true relationship. 
The non-linear nature of convection also 
plays a role in that a linear assumption 
may be insufficient to accurately target 
locations to reduce forecast uncertainty 



that is strictly non-linear at 24-hour lead-
time.  
 
5. Conclusions and Future Work 
 
This study examines the effectiveness of 
applying ensemble-based sensitivity 
analysis and observation targeting 
methodology on a mesoscale convective-
initiation forecast to determine if forecast 
uncertainty can be reduced by assimilating 
additional observations into a forecast 
system and if reductions can be accurately 
predicted. Utilizing a WRF-EnKF DART 
modeling framework, a series of data 
denial cases were presented to assess 
observational impacts on forecast 
uncertainty. A control simulation was 
executed that assimilated a base set of 
observations, with ensemble sensitivity 
and targeting calculations performed on 
the control simulation forecasts. West 
Texas Mesonet stations were selected 
and subsequently assimilated that 
exhibited the largest degree of expected 
variance reduction of chosen scalar 
forecast metrics, maximum reflectivity, 
maximum vertical velocity, and average 2-
meter temperature, within a rectangular 
region in the domain. A 2-meter 
temperature observation from the target 
WTM station was assimilated and a new 
simulation was performed. This process 
was repeated for five stations for each 
forecast metric. Generally, forecast 
expected variance reduction did not match 
the change in variance of the forecast 
metrics discovered. In some instances, 
additional observations increased the 
forecast uncertainty, which is not 
consistent with ESA and targeting theory. 
The five additional observations overall 
reduced the variance of average 2-meter 
temperature and slightly increased the 

maximum reflectivity and vertical velocity 
variance. Adaptations to the EnKF are 
made in the DART system, which could 
lead to alterations to the actual variance 
reduction from what is expected. In 
addition, linear relationship assumptions 
made in ESA may not hold true for a CI 
forecast. Additionally, the forecast metrics 
chosen may not have exhibited a 
Gaussian distribution, which is assumed in 
ESA. Future work will be completed to 
assess the impacts that these 
assumptions of linearity and Gaussian 
distributions, along with the localization 
and inflations features of DART, have on 
the actual variance reduction and if these 
factors can be predicted within the 
expected variance reduction calculations.  
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 T U wind V wind Q RH Td Alt P 

Radiosonde X X X X X X X (surf)  

Satellite  X X      

ACARS X X X X X X   

METAR X X X X X X X X 

Marine X X X X X X X  

Land_Surface X X X X X X X  

West Texas 
Mesonet 

X        

 
Table 1: Observations used during the data assimilation cycle. Black X’s mark 
observations that we always assimilated. Red X’s represent observations that 
were altered for various simulations. 
 
 
 
 
 
 
 
 
 
 
 
 



	  

Figure 1: Three nested domains used during the study at 36km (d01), 12km 
(d02), and 4km (d03) grid spacing. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



(a) 
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Figure 2: Scatters of forecast metrics (a) max dBZ (dBZ), (b) max vertical velocity 
(m s-1), and (c) average 2-meter temperature (K) at forecast hour 24 against 
initial condition 2-meter temperature at model initialization. Lines indicate the 
linear regression between the two variables.  

 
	  
	  
	  



	  

	  
	  
Figure 3: West Texas Mesonet array and four-letter station identifier. 
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(c)	  

	  
Figure 4: Ensemble mean of forecast metrics (a) max dBZ (contours, dBZ), (b) 
max vertical velocty (colored, m s-1), and (c) average 2-meter temperature 
(contours, K). Ensemble spread of max dBZ and average 2-meter temperature 
are colored in (a) and (c). Forecast metric region shown with rectangular box. 
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(c)	  

	  
Figure 5: Ensemble sensitivity for three forecast metrics (a) max dBZ (dBZ deg C-

1), (b) max vertical velocity (m s-1 deg C-1), and (c) average 2-meter temperature 
(deg C deg C-1). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



(a) 

  
(b) 

	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  



(c)	  

	  
Figure 6: Observation targeting for three forecast metrics (a) max dBZ (dBZ2 deg 
C-1), (b) max vertical velocity (m2 s-2 deg C-1), and (c) average 2-meter 
temperature (deg C2 deg C-1). 
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  



(a)	  
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Figure 7: Expected (red) and actual (blue) variance of the forecast metrics (a) 
max dBZ (dBZ2), (b) max vertical velocity (m2 s-2), and (c) average 2-meter 
temperature (K2) as additional observations are assimilated. 
	  


