Influence of model resolution on short-range wind predictions in complex terrain

Raffaele Salerno, A. Perotto, E. Maggioni and F. Spada, Centro Epson Meteo, Cinisello Balsamo, Italy

Preliminary Experimental Phase

3 Sites in Southern Italy in complex orography and with no dominating wind patterns

Site 1: 20 Turbines at an altitude from 279 to 636m Site 2: 15 Turbines at an altitude from 334 to 381m Site 3: 38 Turbines at an altitude from 374 to 717m

Observational Wind Data

10 or 1 minute temporal resolution
Anemometers at 10, 40, 60 and 80 meters above ground
Average wind speed and direction
Standard deviation of speed and direction

Phase I (experimental) : anemoter data Phase II (operational) : data for every turbine

Numerical Model Data

WRF-ARW Version 3.3 / 3.4
Triple nesting 8km, 2.6km, 0.89 km
42 vertical levels
GFS Initialization and contour data
36 hour simulations
Output every 10 minutes
Linear vertical interpolation of desired fields

WRF Model Final Settings

30" Topography

- Thompson graupel physical scheme
- RRTM long wave radiation scheme
- Goddard short wave radiation scheme
- Unified Noah land-surface model scheme
- Mellor-Yamada-Janjic TKE boundary layer scheme
- Kain-Fritsch convective scheme (coarser domain)
- Non-hydrostatic (finer domains)
- Topo_wind tested

2 Test Cases

14 October 2011

16 December 2011

14 Oct 2011, Site 2, Wind Speed

14 Oct 2011, Site 2, Wind Direction

16 Dec 2011, Site 3, Wind Speed

16 Dec 2011, Site 3, Wind Direction

E.Maggioni, F.Spada

Wind Speed Mean Absolute Error

	Site 2 14 Oct	Site 3 14 Oct	Site 2 16 Dec	Site 3 16 Dec
8 km	2.150	3.789	8.580	5.220
2.67 km	1.713	3.043	6.706	3.391
0.89 km	1.768	2.788	6.932	2.926

Linear Regression

Corrected Wind = Forecasted Wind – Expected Error

Expected Error = Au + Bv + C

u and v are the wind components

A, B, C are calculated with linear regression of data of the last 15 days

2.67 km run Wind Speed for turbine 1 in Site 1

Operational results

Forecast MAE (FMAE) and Corrected Forecast MAE (CFMAE) for the 2.67 km domain runs for all sites on the 30th of July 2012:

Site 1 – FMAE: 3.89 – CFMAE: 3.22

Site 2 – FMAE: 5.12 – CFMAE: 4.08

Site 3 – FMAE: 4.08 – CFMAE: 3.31

Power ~ V^3

Conclusion and Future Work

- Increasing the resolution from 8 to 2.67 km produces more realistic wind fields
- MAE comparable when resolution increased from 2.67 to 0.89 km
- Linear regression produces greater improvement to results for wind speed and subsequently power fields
- Runs with resolution up to 100 meters will be tested