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Application of the immersed boundary method to simulations of flow over steep, mountainous terrain
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Motivation
●Quantify impact of terrain-following coordinates in steep terrain

● Immersed boundary method (IBM) implemented into WRF (Lundquist et al. 
2010, 2012)

● WRF: capable mesoscale and LES code; cannot handle complex terrain
● IBM-WRF: can handle complex terrain at LES scales

● Want to use IBM-WRF to nest from meso to microscale
● Best practices unknown

Summary
● IBM-WRF excellent candidate for meso-to-micro framework

● Many questions still outstanding
● WRF and IBM-WRF agree well for small slopes
● Strong correlation between slope and disagreement

● GMAST steep enough to warrant IBM-WRF

Future Work
● Nesting from WRF to IBM-WRF
● Log-law bottom condition
● IBM-WRF performance optimization
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IBM Background
● Immersed boundary method
● Places terrain on Cartesian-like grid
● Nodes just below terrain surface are ghost nodes
● Ghost nodes are reflected across boundary (image 

point)
● Image point value found

● Interpolated from nearest fluid nodes
● Two interpolation options

● Bi/trilinear, inverse distance weighted
● Ghost node value found

● Linear interpolation between image, boundary
and ghost nodes

Experiment
WRF to IBM-WRF: Where to switch?

● Choose optimal transition from WRF to IBM-WRF when 
nesting

● Accuracy a function of resolution, slope, aspect ratio, 
turbulence closure

● Focus on grid skewness (terrain slope)
● Fixed resolution

● Find a resolution WRF can handle
● Constant eddy viscosity

● Larger values -> less terrain influence
● Five values used (20, 30, 40, 50 and 100 m2/s)

● Scale GMAST terrain (slope “knob”)
● WRF will run for all cases; resolution and aspect ratio stay 

constant

MATERHORN Project
● Multi-university research initiative

● PIs at Notre Dame, Naval Postgraduate 
School, UC Berkeley, University of Utah, 
University of Virginia

● Study of the predictability of 
meteorological events in complex 
terrain

● Field site: Granite Mountain Atmospheric 
Testbed (GMAST), located at the US Army 
Dugway Proving Grounds, Utah

● Dense existing instrumentation + IOPs
● Large existing datasets

Background
WRF

● Terrain-following coordinates
● Accurate at coarse resolution
● Inaccurate at high resolutions due 

to steep terrain slopes

IBM-WRF
● Immersed boundary method

● Accurate at high resolution
● Inaccurate at low resolution due to 

interpolation
● At very low resolution, terrain 

becomes a flat plate; accurate

Figure 1: Locations of sensors at GMAST.

Figure 3: GMAST terrain (100m horizontal resolution) with terrain-following 
coordinates (top) and as an immersed boundary (bottom).  Plots to scale.

Figure 4: Hypothetical inaccuracies of WRF and IBM-
WRF as a function of resolution, as outlined on the left.

Figure6: Granite Mountain rendered in 3D at 1km (left), 500m (center) and 50m (right) horizontal grid resolution.  The z axis is scaled by 2.

Figure 9: 2D velocity components for IBM-WRF and WRF after six hours of simulation.  GMAST at full scale.  Difference in velocity 
magnitude shown in Figures 6 (bottom) and 7.

Figure 7: Differences in velocity magnitude between WRF and IBM-WRF when 
scaling terrain height by  0.0, 0.2, 0.4, 0.6, 0.8 and 1.0 (top to bottom).  
K=20m2/s.  Plots to scale.

Figure 10: Maximum difference (left) and average difference (right) in velocity magnitude between WRF and IBM-WRF as a 
function of slope for different eddy viscosities.  The x-axis is reversed so that slope may be considered analogous to grid 
spacing.

Figure 11: 2D representation of interpolation 
scheme used in IBM-WRF for Dirichlet 
conditions.
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● 2D domain
● Simulated for 6 hours
● dx = 500m
● dt = 0.25s
● dz = 50m - 85m
● u

g
 = u

0
 = 5m/s

● K
h
 = K

v
 = 20 - 100m2/s

● neutral temperature profile
● physics off
● BCs

● lateral: periodic
● top: 2km Rayleigh layer
● bottom: no-slip

Figure 5: Maximum terrain 
slope as a function of scaling 
coefficient.

Figure 8: Zoomed view of the difference in velocity magnitude 
between WRF and IBM-WRF after six hours.  See Figure 7 for 
colorbar.  K=20m2/s.  GMAST at full scale.  Plot to scale.

Other Notes
● WRF blows up at fine resolution

● Breaking point depends on a lot of factors
● Want to evaluate impact of terrain alone
● Need to steepen terrain and keep WRF stable

● Large eddy viscosity reduces terrain influence

Figure 2: GMAST at scales appropriate for WRF (left) and IBM-WRF (right).  We intend to nest between the two.
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