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1. INTRODUCTION 
 
The atmospheric flow that results from a 
volcanic eruption typically consists of a rising 
plume of a mixture of hot rock fragments and 
heated air.  This mixture reaches a level of 
neutral buoyancy in the upper troposphere or 
stratosphere, where it spreads laterally.  Some 
eruptions have an explosive nature and are of 
short duration (of 1-2 minutes), such as those 
on the Caribbean island of Montserrat.  Others 
continue for an extended period at an 
approximately uniform rate of emission, such 
as the recent eruption of Puyehue in Chile 
(see Figure 1), and various recent eruptions in 
Iceland such as those of Eyjafjallajökul in 
2010. 
   
Each sufficiently large ash cloud leaves a 
deposit of sediment on the surface when the 
particulate material falls out of the cloud, and 
the neighbourhoods of significant volcanic 
sites are notably marked with layers of such 
sediment as a record of past eruptions.  In this 
paper, I consider the nature and shape of such 
ash clouds, modelled as spreading intrusions 
from a steady source at an elevated level, in 
stratified environments with and without a 
crosswind.  Although ash cloud dynamics was 
the motivating factor, this study addresses the 
general question of the dynamics of such 
intrusions.  Other applications are possible, 
such as flow from deep cumulonimbus, 
sewage outfalls in stratified coastal 
environments, and flows from deep sources in, 
for example, the Gulf of Mexico.  Studies of 
this type of flow from an engineering 
perspective have been made by G.H. Jirka, 
and a survey of the results obtained are 
described in Akar & Jirka (1995a, b).   

In the present study, the objective is to obtain 
a physical and dynamical description of flow 
from a finite source region in a density-
stratified environment without, in the first 
instance, invoking frictional and mixing  
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processes as an essential part of the 
dynamical balance (though clearly they may 
be added later if appropriate).  The most  
important of these processes – the drag on the 
intrusion due to its motion relative to the 
environment – is included in the analysis 
where it is important, namely in the far field, at 
large distances from the source. 
 
The flows described here depend on 3 
parameters: Q, the volume flux from the 
source, N, the buoyancy frequency of the 
environment, and ue , the relative velocity of 
the environmental fluid.  The relevant 
dimensionless parameter governing these 
flows is then ue/(QN2)1/3, which is contained in 
the parameter ε, defined below.   
 
2. DYNAMICAL MODEL AND BASIC EQUATIONS 
 
The model used here is essentially the same 
as that described in Baines et al. (2008), with 
the difference that the source is maintained at 
a steady rate and the background environment 
is moving at a uniform speed relative to the 
source.  We assume that the intrusive fluid is 
produced from a source at lower (ground) 
levels, and rises as a buoyant plume to a level 
of neutral density, where it spreads.  We are 
(mostly) here concerned with the manner of 
the spreading of this fluid in the presence of a 
crossflow, and assume that the fluid is 
homogeneous, incompressible and effectively 
inviscid, at least in the vicinity of the source.   
 
For an intrusion layer of thickness d and 
density  , the hydrostatic pressure is 
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where N is the buoyancy frequency.   The 
principal governing equations are then 
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These represent the momentum equation, 
conservation of mass/volume, and irrotational 
flow, the latter condition applying because all 
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the fluid in the intrusion has come from a 
localised source.  Assuming steady-state flow, 
the first of equations (2) may be integrated to 
give the Bernoulli equation            
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where C is a constant.  If we also assume that 
the flow is in a steady crosswind of speed ue, 
this becomes (Milne-Thomson 1960) 

           
22

2
2

2 euCNd
+=⎟

⎠
⎞

⎜
⎝
⎛+u .                (4) 

A rising plume of fluid provides a localised 
source of fluid to the intrusive layer, and this 
may be modelled by a constant source of 
homogeneous fluid at the neutral level, 
spreading radially at a uniform rate in all 
directions within a radius rs, which defines the 
spatial size of this source region.  Accordingly, 
at the radius rs we have                                       

Qudr sss =π2 ,                                   (5)                                                              
where Q denotes the volume flux of the 
source, and ds, us the thickness and radial 
velocity of the intrusive fluid at r = rs.  rs 
depends on plume dynamics, and may be 
expressed as 
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where as  is of order unity.  
  
For r < rs the flow is dominated by the 
dynamics of the plume, with negligible 
influence of the external flow, whereas for r > 
rs the effect of the external flow is significant.  
The parameter C may be defined in terms of Q 
and N by the relation 
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In the absence of any external flow, taking rs to 
be the minimum possible value of r, for steady 
flow (4) and (5) imply that                           

2
s

s
Nd

u = ,                                               (8)    

with     
3/12/1

1
⎟
⎠
⎞

⎜
⎝
⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

N
Q

a
d

s
s π

   .            (9)               

Hence ds < rs , if  as ≥ 1.We next non-
dimensionalise the variables by the constant 
C, so that 
 

C/uU = ,     D=Nd/2C,      ε = ue/C  ,   (10)                                                     
and the equations governing the steady-state 

flow inside the intrusion are then   
01 222 =−−+ εDU ,                        (11)

0=∇ Ux ,   ( ) 0. =∇ UD  .                       (12)  
 
These equations constitute an hydraulic 
system that is analogous to that for a single 
layer of fluid with a free surface.  Flows may 
be classified as sub- (D > |U|) or super-critical 
(D<|U|), implying that waves may or may not 
be able to propagate upsteam against the 
mean flow of the layer.  They must be then 
solved numerically, but, as with single-layer 
flows, the degree of criticality must be 
considered in the interpretation of flow 
solutions. For situations of interest, ε is in the 
range        0 < ε < 1.  
 

 
Figure 1. An aerial view shows ash and steam 
from an eruption in the Puyehue-Cordon 
Caulle volcanic chain near Osorno city in 
south-central Chile, on June 5, 2011. Picture 
taken through a plane window. (Reuters/Ivan 
Alvarado). 
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Figure 2. Schematic diagram of the horizontal 
pattern of flow within and around the intrusion. 
P denotes the upstream stagnation point, and 
dot-dashed lines denote flow outside the 
intrusion.   
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Figure 3.  The transcritical flow solution in the neighbourhood of the source for ε = 0.01.  Frame (a) 
shows the stream function for the mass/volume flux; frame (b) shows the thickness D; frame (c) 
shows the fluid speed, directed along the contours in frame (a), and frame (d) shows the degree of 
satisfaction of the Bernoulli equation, which is an estimate of the error in the solution.  All contours are 
equally spaced in the values of their respective variables. 
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Figure 4. As for Figure 3, but for ε = 0.1. 
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Figure 5. As for Figure 3, but for ε = 0.2. 
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Figure 6. As for Figure 3, but for ε = 0.5. 
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Figure 7. As for Figure 3, but for ε = 0.8. 
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3. FLOW WITHOUT AMBIENT WIND 
 
Without an ambient background wind, the 
intrusive flow is axi-symmetric, ε = 0, and (5) 
applies to all radii with R = r/rs > 1, in the form 
                     
                          DU=1/2R.                          (13) 
 
Axisymmetric solutions to (11-12) then give 
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The intrusion spreads like a pancake, with  
    U ~ 1,  and D ~ 1/2R., for R → ∞ .         (15) 
 
4. FLOW SOLUTIONS NEAR THE SOURCE 
IN CROSSWIND 
 
The nature of the flow in plan view is shown in 
Figure 2.  In general, the flow pattern within  
the intrusion is two-dimensional, whereas the 
external flow of the stratified environment is 
three-dimensional.   However, the intrusion 
necessarily has an upstream stagnation point 
P, and from the Bernoulli equation this implies 
that the thickness D is a maximum there, with 
the value (1+ε2)1/2 > 1.  This implies that the 
quantity D/ε > 1 also. If one regards the ash 
cloud as an obstacle within the environmental 
flow field, D/ε is equal to the quantity “Nh/U” 
applying to stratified flow of speed U past 
topography of height h. If Nh/U > 1, the flow is 
primarily around the obstacle, rather than over 
it (Baines 1995), and this is certainly the case 
for volcanic ash clouds in the parameter range 
of interest Further, the blocking process 
causes the external stratification to weaken at 
the levels of the intrusion, so that the density 
there is approximately that of the fluid inside 
the cloud. 
In consequence, the flow near the source 
region is approximately two-dimensional both 
inside and outside the cloud, and the above 
equations (11, 12) are expected to have some 
validity beyond the distance of the separation 
point.   
 
The numerical procedure involves a low-order 
Fourier expansion around the source.  
Assuming simple conditions at the source that 
are consistent with equations (11,12) and 
represent a simple source in a crossflow, one 
may obtain solutions that describe the flow in 
the neighbourhood of the source (the details of 
how this is done will be described elsewhere).  
Two types of solution are obtained.  The first 
type consists of flow that is everywhere 
subcritical near the source, but this is 
unrealistic because it cannot be matched with 
a far-field flow that must be supercritical as it 

expands and thins.  The second type of flow is 
“transcritical”, in that the flow is subcritical near 
the upstream stagnation point, but becomes 
supercritical as it passes around the source.  
These solutions are therefore quite realistic, 
and examples for a range of values of ε are 
shown in Figures 3-7. 

 
 
Figure 8.  Dependence of the position of the 
upstream stagnation point on ε.  
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of the source (near θ = 180°), but as ε 
increases above 0.1 it expands around the 
source to θ ≈ 90°.  In all cases, D is a 
minimum on the centreline, the positive X- 
axis.  The flow speed is a maximum there for ε 
≥ 0.5, but as ε decreases it moves off-axis to θ 
~ 45° for ε << 1.  The “Bernoulli error” 
represents the sum of the terms in the 
Bernoulli equation, which should sum  to zero.  
Individual terms have maximum value ~ 1, so 
that values less than 0.05 represent 5% error, 
etc..  The errors are smallest for ε = 0.8, and 
tend to become larger for increasing R.  They 
are generally less than 10% for R < 3.  
             
Perhaps the most remarkable property of 
these flow solutions is the dependence of RP 
on ε, shown in Figure 8.  It is clear that the 
position of RP hardly varies, even though ε 
varies over two orders of magnitude.  This can 
also be seen in Figure 9, which shows the 
boundaries of the intrusion depicted in Figures 
3-7, on the one diagram. 
 
5. ASYMPTOTIC SOLUTIONS FOR THE FAR 
FIELD 
 
The computation of the flow in the intrusion 
downstream from the source region is 
potentially complex, because it requires the 
description of the external flow, which 
becomes three-dimensional when D ≤ O(ε ).  
However, an analysis of the asymptotic 
properties far downstream (for large R), of a 
thin intrusion spreading in uniform flow, is 
possible. This has been done for two 
situations: firstly, for inviscid flow, and 
secondly, and more realistically, incorporating 
the effect of drag of the environmental fluid on 
the intrusion.  In both cases, we have    

            

( )

∫ =
Rm

RDU
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2
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where θm(R) is the maximum value of θ for 
given R, on the boundary.  On this boundary, 
we also have the spreading condition for an 
intrusive gravity current, which must here 
spread in the presence of ambient flow 
(Simpson 1997): 
 
            A1 D(R,θm) =  ε sinθm ,                    (17)                  
 
where A1 is a proportionality factor of order 
unity.   
 
In the inviscid case, U ~ (1+ε2)1/2, and in the 
drag-affected case it is Uc ~ ε (where subscript 
“c” denotes a Cartesian velocity).  Hence, 
since U is finite and R large it follows that D 

and θm must be small.  In consequence we 
obtain 
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where Ua denotes the asymptotic velocity (in 
either the R- or X-directions), which equals 
(1+ε2)1/2 for the inviscid case, and ε for the 
realistic case with drag of the environment, 
which forces the intrusion to have the same 
mean velocity, to leading order. 
 
These results imply that the width of the 
intrusion at large R, denoted Ym, increases as 
R1/2 (or X1/2), for R (or X) large.  Hence, the 
intrusion continuously expands with distance 
from the source.  This is shown graphically in 
Figure 10. 
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Figure 10.  Asymptotic form of the intrusion for 
large distances from the source, for the case 
with turbulent drag from the environment. 
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