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1. INTRODUCTION

Mesoscale models like the Weather Research and Fore-
casting (WRF) model are traditionally used for predictions
of atmospheric flow at regional scales. For higher-resolution,
microscale simulations, computational fluid dynamics (CFD)
codes are frequently used with the large-eddy simulation (LES)
technique. Generally, mesoscale codes solve the Reynolds-
averaged Navier-Stokes (RANS) equations with features for
operational weather prediction and extensive parameteriza-
tion schemes for atmospheric physics processes. Traditional
mesoscale codes also use a terrain-following coordinate sys-
tem, where the bottom boundary of the grid is mapped to the
terrain and metric terms arise from the coordinate transfor-
mation. This makes the application of the bottom boundary
condition straightforward and works well at resolutions too
coarse to resolve the more complex features of the terrain.
Terrain-following coordinate systems generate some numeri-
cal errors in the presence of any slope due to the discretized
metric terms (Janjic 1977; Klemp et al. 2003). For low slopes
this error is negligible but at high slopes model errors be-
come large and can cause stability problems (Lundquist et al.
2010b). On the other hand, traditional CFD codes that are
used for high-resolution studies of microscale atmospheric dy-
namics often have simplistic boundary conditions and do not
use atmospheric physics parameterizations. The trade-off is
that CFD codes, and specifically LES codes, are able to re-
solve turbulent eddies and thus study their evolution in the
atmospheric boundary layer (ABL). These models can handle
complex terrain well through use of conformal grid generation
techniques, which are not terrain-following. For ABL simula-
tions, the massive historical cost of computing resources has
meant that mesoscale codes cannot be run at high resolutions
if they are to cover a sufficiently large geographic region and
LES codes cannot be run for large geographic regions if they
are to be sufficiently resolved. A model capable of represent-
ing a range of scales is needed to seamlessly integrate from
the meso to the microscale. This work continues development
of such a framework, using the WRF model. WRF is both a
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capable mesoscale model and LES model, and is widely used
for both operational and research applications (Skamarock
et al. 2008). WRF is able to nest between mesoscale and
LES domains, albeit in a terrain-following coordinate system.
Thus, WRF in its standard form is unable to handle very
steep and complex terrain at fine resolutions. An immersed
boundary method (IBM) has been implemented into WRF to
allow for complex terrain to be represented at high resolu-
tions within the WRF model (Lundquist et al. 2010a, 2012).
IBM immerses the terrain boundary within a non-conforming
grid, using interpolation methods to represent the effect of the
boundary on the flow. The difference between the grids for
each coordinate system is illustrated in Figure 1. The IBM-
WRF framework is an excellent candidate for a model which
can capture meso and microscales over steep and complex
terrain. At coarse resolutions, the terrain-following coordi-
nates native to WRF are appropriate, but at fine resolutions
over complex terrain these break down and the IBM feature is
needed to represent the terrain. For a framework which uses
grid nesting from meso to fine scales, the appropriate transi-
tion zone from terrain-following to IBM coordinates must be
determined. In this manuscript we present three simple ex-
periments conducted on two-dimensional domains to compare
WRF and IBM-WRF and evaluate how they each perform for
different grid scales. (We use “WRF” to indicate the tradi-
tional form of WRF using terrain-following coordinates and
“IBM-WRF” to indicate the use of the IBM coordinates.)
These preliminary results will be used to guide more costly
efforts to describe the relationship between WRF and IBM-
WRF in three dimensions. The experiments are designed to
illustrate the numerical errors associated with both the terrain-
following coordinates and the IBM coordinates and design a
strategy to mitigate these errors by appropriately transitioning
between WRF and IBM-WRF.

2. MATERHORN

This work is done as part of the MATERHORN cam-
paign. The general goal of MATERHORN is to study the pre-
dictability of meteorological events in complex, mountainous
terrain. The MATERHORN observational campaign will take
place at the Granite Mountain Atmospheric Science Testbed
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Fig. 1. A profile of Granite Mountain represented in terrain-following (top) and IBM coordinate systems. Note the distortion
of grid cells near the surface when using terrain-following coordinates. At the top of the domain the terrai-following coordinates
are flat. Domains are zoomed in horizontally and vertically.

Fig. 2. Approximate location of Granite Mountain (red dot).
Map data c©2012 Google.

(GMAST), located at Dugway Proving Ground in Utah. Gran-
ite Mountain is a relatively isolated mountain on the playa,
southwest of the Great Salt Lake (Figure 2). This creates
a nearly ideal topography of a complex mountain sitting on
otherwise flat topography. Figure 1 shows a line profile of an
east-west cross-section of Granite Mountain and illustrates
the complexity of the surface.

3. IMMERSED BOUNDARY METHOD

IBM is used to represent the effects of boundaries on non-
conforming, structured grids. There are many possible imple-
mentations of IBM. As implemented, IBM-WRF uses a direct
forcing method, where solutions at nodes near the boundary
are calculated specifically to enforce the boundary condition.

IBM-WRF applies forcing at ghost nodes (nodes that take a
value only to enforce a correct solution in an adjacent node,
and are not included in the physical solution) located just be-
low the boundary. All nodes below the boundary are referred
to as solid nodes, whether they are a ghost node or not. Prog-
nostic variables are reconstructed on the ghost node by finding
a fit between the ghost node, the boundary condition and the
image point (reflection of the ghost node across the bound-
ary). The value of the image point is found via interpolation
from surrounding nodes in the fluid domain. In this work, the
image point is found using a bilinear reconstruction scheme
for two-dimensional terrain. A three-dimensional trilinear in-
terpolation method and an inverse distance weighting method
have both been implemented in IBM-WRF (Lundquist et al.
2012). An illustrative schematic of this method is shown in
Figure 3. A detailed description of the implementation of
IBM-WRF is presented by Lundquist (2010).

4. HYPOTHESIS AND EXPERIMENTS

The mesoscale model WRF uses a terrain-following co-
ordinate system. As previously discussed, this becomes an
issue in steep topography. Terrain data is often available at
very high resolutions (∼5m), therefore the steepness of the
terrain represented in the model is essentially determined by
the horizontal resolution of the simulation. Thus, we assume
that the numerical errors due to WRF’s coordinate system
increase as the grid spacing decreases, provided steep terrain
is present and no adjustments are being made to the vertical
resolution (Mahrer 1984). IBM-WRF, on the other hand, re-
lies on interpolation at the terrain boundary. Therefore, when
modeling complex terrain at the mesoscale, terrain-following
coordinates are preferable because the numerical errors from
the coordinate transformation are smaller than the numerical
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Fig. 3. Visual description of the three types of nodes used in
IBM-WRF. The blue line represents the terrain surface. The
ghost node is the first node beneath the surface, and its im-
age point is a reflection normal to the surface into the fluid
domain. The green fluid nodes mark the values that are inter-
polated to find the image point value. The image point value
and the boundary condition determine the value that the ghost
node takes. In this example the value at the boundary is used,
which is the case only under Dirichlet boundary conditions.

errors introduced by the interpolation scheme. Once the grid
spacing is larger than the terrain scale, the surface is approx-
imately flat and IBM-WRF’s interpolation is adequate. This
creates numerical error inherent in IBM-WRF that is very low
at high resolutions, regardless of the presence of steep ter-
rain, and high at coarse resolutions in the presence of steep
terrain. At the point where the terrain is coarse enough to
be essentially flat the error returns to a low value. While the
performance of terrain-following coordinates in steep terrain
is well studied (Janjic 1977, 1989; Klemp et al. 2003; Schär
et al. 2002; Zängl 2002, 2003, 2004; Zängl et al. 2004), the
horizontal resolutions appropriate for WRF and IBM-WRF rel-
ative to each other are not known. Given the inverse effect of
resolution on the numerical errors of the two coordinate sys-
tems, when nesting from coarse to fine domains in an IBM-
WRF framework, there should exist a horizontal resolution
where the modeler is best served by changing from WRF to
IBM-WRF. A simple analysis of the relationship between the
two models and horizontal resolution (and thus, indirectly,
slope) can be done to estimate the nature of the two mod-
els’ appropriate spatial scales. Figure 4 shows a schematic
of the expected numerical errors of each coordinate system
compared to a hypothetical exact solution. It follows that, if
the shapes are correct, the difference between the solutions
from WRF and IBM-WRF should relatively follow the sum of
the two individual curves, and the resolution to switch from
WRF to IBM-WRF should be the point where the two curves
intersect. Note that in this schematic of the error curve WRF
is shown to have a value across the entire spectrum of reso-
lutions, and indeed this is how we expect the theoretical error
associated with terrain-following coordinates to behave. In re-
ality, though, WRF will have stability problems at very steep
slopes (fine resolutions) and the error will not be measurable.

Fig. 4. Schematic of expected behavior of numerical error in
WRF and IBM-WRF as a function of horizontal grid resolu-
tion.

5. DIFFERENCE VS. HORIZONTAL RESOLUTION

To estimate the behavior of the numerical error, WRF and
IBM-WRF are run in complex terrain at different horizontal
resolutions to compare differences in the resulting velocities.
The terrain being used is an idealization of Granite Mountain
created by prescribing a minimum elevation in the domain
and removing all features other than the mountain. The re-
sult is an isolated mountain on a perfectly flat playa, which is
a relatively realistic representation at the microscale. A two-
dimensional east-west slice is taken through one of the highest
points on Granite Mountain. The solutions from WRF and
IBM-WRF are compared by interpolating the velocity magni-
tude field from IBM-WRF to the terrain-following coordinate
system and taking the difference at each node in the domain.
The difference between the two coordinate systems is repre-
sented by the largest difference, in magnitude, present in the
domain. For convenience, hereafter this interpolated velocity
difference field between WRF and IBM-WRF will simply be
referred to as the difference and will be a surrogate for the
theoretical error in the system. This assumes that for any hor-
izontal resolution one of the coordinate systems is appropriate
and can give an accurate solution.

a. MODEL SETUP

All cases are two-dimensional in the east-west direction
with 50 horizontal grid points. The horizontal resolutions
used range from 450m to 4km. These extents were found
empirically. The finest grid is determined by the point where
WRF becomes numerically unstable for this configuration, and
the coarsest grid is the point where the difference between
WRF and IBM-WRF starts decreasing. WRF has 90 vertical
grid points, covering a vertical span from 1315m to 7000m
above sea-level (ASL). IBM-WRF has 92 vertical grid points,
to account for the two necessary solid nodes below the ter-
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rain, and covers a vertical span from 1215m to 7000m ASL.
The cases are run for 6 hours with a 0.25s timestep, with
5m/s geostrophic forcing. The initial temperature profile is
neutral and the initial velocity profile is a uniform 5m/s west-
erly flow. The eddy viscosity for all cases is 100m2/s, to
allow the solution to reach steady-state quickly. Coriolis is
neglected. A no-slip bottom boundary condition implemented
by Lundquist et al. (2010a) is used and a Rayleigh damping
layer is present at the top 2km of the grid. The lateral bound-
ary conditions are periodic. Terrain data is obtained from the
Utah AGRC’s 5m Auto-Correlated Digital Elevation Model
(DEM) with aforementioned adjustments; minimum elevation
has been set to 1315m. The DEM is interpolated to the model
domain using the WRF Preprocessing System’s (WPS) aver-
age grid cell interpolation and smoothing-desmoothing. Of
the aforementioned settings, the results are most sensitive to
vertical resolution and eddy viscosity.

b. RESULTS

Figure 5 shows the maximum difference of five representa-
tive resolutions. The figures have a horizontal span of 60km,
centered on Granite Mountain, and extend vertically to 4km
ASL (from a base of 1315m). In all cases the maximum dif-
ference is on the lee side of the mountain and spreads down-
stream. The general trend is illustrated in these cases: the
largest error is present in the 3km domain, with a decreasing
trend in either direction. Notice that in the coarsest case the
error is centered on the downstream edge of the mountain
and spreads downstream, while in the finer two cases the er-
ror is located more directly over the mountain and does not
spread nearly as far. The extreme cases appear to have a dif-
ferent mechanism causing their respective differences. Figure
6 shows the maximum difference as a function of grid spac-
ing. The error increases at coarser resolutions, as expected.
With coarser grids, the terrain slope is lower, hence the WRF
solution does a better job. The increase in error is due to
interpolation errors in the IBM-WRF solution, which become
larger at coarse resolution because the distance between grid
points increases. Thus, the shape seen is approximately what
we would expect to see if only evaluating the error from IBM-
WRF. Once the resolution is so coarse that the terrain looks
entirely flat to the model, the difference between the results
becomes quite small, leading to a sharp drop-off in the curve
at very coarse resolutions. These results therefore capture
the orange curve in the Figure 4 schematic above. The green
curve requires very fine resolutions where WRF may not be
able to accurately run, especially in two dimensions.

6. DIFFERENCE VS. SLOPE

The previous experiment was conducted at coarse reso-
lutions where IBM-WRF has not previously been tested (be-
cause it was not designed for such coarse resolutions). At
these coarse resolutions, the above results imply that the

terrain-following coordinates are more accurate than using
IBM. The difference between the models is dominated by
the effects of grid spacing on IBM-WRF, and it is very diffi-
cult to discern the impact that the slope has on WRF. The
point where slope issues begin to dominate is of great inter-
est, since it likely plays a large role in defining the edge of
both WRF and IBM-WRF’s preferred scale ranges. The scale
that is dominated by terrain slopes is not present due to nu-
merical limitations. Since this is a two-dimensional domain
it should not be assumed that horizontal resolutions that are
too fine for WRF under these settings remain problematic in
more realistic, three-dimensional cases. A second experiment
is conducted to evaluate the relationship between slope and
error. The horizontal resolution remains constant at 500m
and the terrain is scaled from zero to one. The scaling factor
is applied only to heights above the artificial floor of the to-
pography. When the scale is zero, our domain is reduced to
flat terrain and the two coordinate systems should yield nearly
identical results. When the scale is one, we know from our
first experiment that the maximum difference for this setup
at 500m horizontal resolution should be approximately 0.6m/s
(Figure 6). Since the resolution here is not changing, the vari-
ability in the error associated with grid points catching peaks
and troughs in the terrain is not in play, and thus the trend
should be very clear.

a. MODEL SETUP

The setup from the first experiment for 500m horizontal
resolution is scaled to coefficients of 0, 0.1, 0.2, 0.4, 0.6,
0.8 and 1.0. Since such strong trends are produced by this
experiment, it is conducted for different eddy viscosities as
well (K=20, 30, 40, 50, 100m2/s). All other settings are
consistent throughout all runs. The coefficients used for each
resolution are shown in Figure 7.

b. RESULTS

Figure 8 shows five of the seven terrain scales (for K =
100m2/s) and their difference field. A clear pattern, focused
just on the lee side of the peak, emerges as the height of the
mountain is increased. Even in the least dramatic case, the lo-
cation of the mountain can be made out easily by the location
of nonzero difference values. The maximum difference values
seen in each domain, and for each eddy viscosity, follow a
very strong increasing trend with slope. In Figure 9 the maxi-
mum differences are plotted against slope, with the slope axis
reversed to mimic the pattern that would emerge were grid
spacing used on the independent axis. Despite the altering of
the x-axis, Figure 9 closely resembles the green curve in Figure
4 above. This experiment is the only of the ones presented to
vary eddy viscosity (all values are included in Figure 9). When
the eddy viscosity is high the parameterized turbulent mixing
is rapid and velocity fluctuations are smoothed out. Thus the
expected result is that for any scenario, a larger eddy viscosity
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Fig. 5. Sample of velocity magnitude difference fields from the first experiment. Cases where the horizontal resolution is
(from top to bottom) 4km, 3km, 2km, 1km and 500m. Only horizontal resolution is actively changed for the different cases.
Domains are zoomed in horizontally and vertically. To scale.

Fig. 6. Maximum nodal difference in velocity magnitude
between WRF and IBM-WRF (interpolated to WRF’s grid)
in the first experiment. Only horizontal resolution is actively
changed for the different cases. Semi-log scale.

Fig. 7. Scales used on the terrain to achieve different slopes
in the second experiment. Horizontal resolution is 500m for
all cases.
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will always yield a smaller maximum error. This was indeed
the case for these results.

7. DIFFERENCE VS. GRID SPACING

In the first experiment a strong relationship between hori-
zontal resolution and difference is seen. Horizontal resolution
in this case, though, is essentially two variables: grid spacing
and slope, and the different effects of the two are difficult to
de-couple. To make this distinction, grid spacing is examined
alone. In this experiment 19 different horizontal resolutions
between 4km and 450m are used. For each resolution, the
height of Granite Mountain is scaled so that the maximum
slope seen over any set of adjacent grid point is 10 degrees.
All other factors remain constant. This allows for different
grid spacings to be evaluated without an associated decrease
in slope.

a. MODEL SETUP

The base model setup the same as the previous case, with
a scaling factor used to maintain a maximum slope of 10
degrees at each resolution. Figure 10 shows the scales used
at each resolution to achieve the necessary maximum slope.

b. RESULTS

Difference fields for five representative domains are shown
in Figure 11. Unlike in Figure 8, where the difference seems
to emerge directly from the mountain, the differences here
are much more sporadic and concentrated to the sides of the
mountain. Such patterns, especially the one shown for the
2km case, indicate an interpolation error in IBM-WRF. This
is visually confirmed in Figure 12 by comparing the veloc-
ity magnitude fields of WRF and IBM-WRF. The resulting
relationship between maximum difference and horizontal res-
olution is shown in Figure 13. The difference follows a similar
trend as the initial experiment, but shows no sign of a low-
valued tail. Two outliers are very visible (noted in Figure
13), but the trend is clearly present. Interestingly, the outliers
are both at horizontal resolutions where the scaling factor is
< 1, which is counter-intuitive. A decrease in the scale of
the terrain is expected to be accompanied by an improvement
in mutual agreement between the two systems. These out-
liers seem to be a result of a variable nature possessed by
IBM-WRF at coarse resolutions, and are an example of an
issue that the implementation of a log-law could potentially
address.

8. CONCLUDING REMARKS

The combined WRF and IBM-WRF framework is poten-
tially a very powerful atmospheric model, capable of ranging
across essentially all scales of the globe. The meso-to-micro
scale nesting capability would allow for LES at the finest scales
to consider regional weather effects associated with observa-

tional data. This would allow improved capabilities for joint
observational and modeling studies of the atmosphere, espe-
cially studies of atmospheric turbulence. The general spatial
scale where each coordinate system is appropriate is known,
however the specific nature of numerical errors in the dif-
ferent systems is not known. If these two systems are to
be used in a single modeling framework, the nature of the
two systems relative to each other and their model settings
must be investigated in more detail. In this work we have
presented a model for the behavior of numerical errors from
WRF’s terrain-following coordinate system and IBM-WRF’s
immersed boundary method and conducted three simple ex-
periments to evaluate this model. An expected result is that
for fine resolutions (and steep slopes) there is a large differ-
ence between the dynamics of WRF and IBM-WRF. A large
difference is also expected at coarse resolutions, with a range
of moderate resolutions that show noted agreement. The ex-
pected relationship at coarse resolutions was confirmed. For
very fine resolutions the relationship could not be verified due
to numerical instabilities, so the difference between WRF and
IBM-WRF was evaluated for increasing slopes at a constant
resolution. Large slopes were confirmed to have a negative
impact on the agreement of the models. From these results
it can be concluded that the appropriate choice of coordi-
nate system (terrain-following vs. IBM) is highly dependent
on horizontal resolution and terrain slope. It is also concluded
that, for two dimensions, there is a range where the difference
between WRF and IBM-WRF is small; this is the located of
the desired transition between the two (see Figure 4). It is
expected that these results will be helpful in designing three-
dimensional experiments, which will be both more expensive
and less dynamically constrained. The errors generated by
terrain-following coordinates in WRF are a result of trunca-
tion errors which become large over very steep slopes. The
errors generated by IBM-WRF are primarily a result of inac-
curate interpolation caused by large spatial distances between
grid points. This interpolation error can partially be alleviated
with the implementation of a log-law to reconstruct image
point values. Indeed, this is a subject of ongoing work that is
expected to increase the flexibility of IBM-WRF to extend to
coarser resolutions.
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Fig. 8. Sample of velocity magnitude difference fields from the second experiment. Cases where the terrain scale is (from top
to bottom) 0.2, 0.4, 0.6, 0.8, 1.0. Horizontal resolution is 500m for all cases and the terrain is scaled to change the steepness.
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in reverse to mimic the shape expected when grid spacing is
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slope of 10 degrees for each case of varying horizontal resolu-
tion. Semi-log scale.
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Fig. 11. Sample velocity magnitude difference fields from the third experiment. Cases where the horizontal resolution is (from
top to bottom) 4km, 3km, 2km, 1km, 500m. The terrain is scaled so that the maximum slope between adjacent nodes is 10
degrees for every resolution. Domains are zoomed in horizontally and vertically. To scale.

Fig. 12. Velocity magnitude fields for IBM-WRF (top) and WRF when the horizontal resolution is 2km and the maximum
slope is artificially set to 10 degrees. To scale.
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resolution. Two outliers marked with red. Semi-log scale.
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