The nonlinear model generally produces stronger eddy amplitude with stronger baroclinicity, even in the presence of concomitant stronger deformation due to the enhanced stationary wave. The same was found to be the case in a simpler quasi-geostrophic model, in which the eddy amplitude nearly always increases with baroclinicity, and deformation only limits the maximum eddy amplitude when the baroclinicity is unrealistically weak. Overall, these results suggest that it is unlikely that dry dynamical effects alone, such as deformation, can fully explain the observed Pacific midwinter minimum in eddy amplitude.
It is argued that one should take into account the seasonal evolution of the impacts of diabatic heating on baroclinic wave development in order to fully explain the seasonal cycle of the storm tracks. A set of highly idealized experiments that attempts to represent some of the impacts of moist heating is presented to suggest that deficiencies in the model simulated seasonal cycle of both storm tracks may be corrected when these effects, together with observed seasonal changes in mean flow structure, are taken into account.
- Indicates paper has been withdrawn from meeting
- Indicates an Award Winner