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Introduction

In atmospheric research, explicit assumptions are often made
about the shapes of velocity or vorticity profiles of axisymmetric
vortical flows. Some examples of such “vortices” are the po-
tential vortex, the Rankine-combined vortex, the Burgers–Rott
vortex, the Sullivan vortex, the Kuo vortex, the Serrin vortex,
the Lamb–Oseen vortex, etc. In many such models, the tan-
gential velocity away from the vortex axis (beyond the RMW)
decays like r−1, where r is the distance from the vortex axis,
while the axial vorticity is zero or approaching it fast as r
increases beyond the RMW.
We revisit some experimental and theoretical results
at different scales and focus on the velocity/vorticity
decay in the “intensification region,” which, in many
cases, exhibits a power law decay with uθ ∝ r−β

and/or ωz ∝ r−(β+1) with 0 < β < 1.
This phenomenon seems to be prevalent across many scales,
including a bathtub vortex, the vortex chamber, torna-
does/mesocyclones, and tropical cyclones.

The Bathtub Vortex [4]

An analysis due to Klimenko [4] results in a power law for the
behavior of the axial vorticity, ωz ∝ r−α with α = 4/3 in
the intensification region, implying an r−1/3 component in the
tangential velocity. It is argued that for “realistic vortical flows”
4/3 ≤ α ≤ 3/2.

Figure 1: A bathtub vortex. It is argued that ωz ∝ r−4/3 [4].

The Tornado Vortex Chamber (TVC) [7]

An experiment of Lund and Snow (1993) with the Purdue Uni-
versity TVC II and the laser Doppler velocimeter provides tan-
gential velocity measurements and analysis at the 15 cm height,
halfway up the convergence zone. A “best fit” of the data is
provided resulting in the power law uθ ∝ r−0.63, and conse-
quently ωz ∝ r−1.63.

Figure 2: The PU TVC II and the observed velocity profile: uθ ∝ r−0.63.

Tropical Cyclones Data Analysis [8]

Mallen et al. [8] have analyzed wind speeds in 251 tropical cy-
clones classified as prehurricanes, minimal, and major hurricanes
and came up with the values below for the decay of uθ ∝ r−α:

Some results for major hurricanes are shown below. On the left,
the data from the individual 72 major hurricanes analyzed to-
gether with their composite average (α = 0.48); on the right,
comparison of the average profile with some idealized vortices:

Figure 3: Composite analysis of 72 major hurricanes and comparison with
some idealized vortices; here α = 0.48 [8].

Tornado Velocity Studies [5, 6, 10, 11]

Recent radar studies show that typical velocity profiles in tor-
nadoes exhibit similar power laws. Using Doppler radar data,
Wurman et al. have demonstrated uθ ∝ r−0.67 for the 1998
Spencer, SD tornado (left, [10]), and uθ ∝ r−0.6 for the 1995
Dimmit, TX, tornado (right, [11]):

Figure 4: Doppler velocity decay for the 1998 Spencer, SD, and the 1995
Dimmit, TX tornadoes [10, 11].

More recent studies [5, 6] found variability in the decay co-
efficients over time. In one case increasing magnitude of the
coefficient could be correlated to the intensity of the tornado; in
the other it was speculated this variability could be due to the
roughness of the surface along the path of the tornado.

Mesocyclone/Tornado Vorticity Study [3]

Vorticity and pseudovorticity have been analyzed by Cai [3] for
five nontornadic and tornadic storms (Superior, NE; San Angelo,
TX; Hays & Garden City, KS; Kellerville, TX). Pseudovorticity
has been found to obey ωz ∝ r−α, with α = 0.42, 0.81,
1.02, 1.50, 1.60, respectively, indicating a correlation between
the magnitude of the exponent and the intensity of the meso-
cyclone. Also, a “tendency for the vorticity lines to become
steeper as the mesocyclone becomes stronger” is demonstrated
for Garden City (tornadic) and Hays (nontornadic).

Figure 5: Vorticity (left) and pseudovorticity (right) rates of decay. Pseu-
dovorticity seems to differentiate better between various storm strengths [3].

Some Theoretical Work

Tropical cyclones, Mallen et al. [8]

In Mallen et al. [8], references are provided in which it is
argued that the velocity decay for tropical cyclones should
satisfy uθ ∝ r−1/2. This is based on the argument that
in a steady-state hurricane in gradient wind balance, in
which the boundary layer friction drag satisfies F ∝ u2

θ, the

frictional torque’s radial gradient,
∂(rF )
∂r

, vanishes. This
immediately yields the power law above.

Buldakov, Egorov, Sychev [2]

Buldakov et al. [2] seek steady-state similarity solutions
in the viscous vortex core which match external inviscid
similarity solutions with a power-law decay uθ ∝ r1/n−2.
The form of the sought solutions is

ur =
KnU(η)
νn−1zn

uθ =
K2nV (η)
(νz)2n−1 uz =

K2nW (η)
(νz)2n−1

where η = (Knr)/(νz)n is a nondimensional parameter.
They numerically discover no solutions for n > 0.618, two
solutions for 0.5 < n < 0.618, and one for n = 0.618.
(The threshold value corresponds to uθ ∝ r−0.382.)

Figure 6: The numerically found solutions for U(η), V (η),W (η) [2].

Klimenko [4]

Klimenko [4] investigates “intensive” vortices, in which
converging radial flow intensifies the flow rotation, which
in turn leads to further amplification of vorticity as follows
from an asymptotic, multiscale analysis of the interaction be-
tween vorticity and velocity of the flow. Various flow scales
are analyzed, including bathtub vortices, firewhirls, su-
percell tornadoes, and tropical cyclones. It is found
that the axial vorticity in the intensification region should
satisfy ωz ∝ r−α with 4/3 ≤ α ≤ 3/2.

Authors’ work [1]

In [1], the authors look for solutions to the Navier–
Stokes and Euler equations (with appropriate boundary
conditions) in spherical coordinates (R,α, θ)

uR =
G(x)
rb

uα =
F (x)
rb

uθ =
Ω(x)
rb

where x = cosα, r = R sinα, and b > 0. (The
Navier–Stokes case with b = 1 was analyzed in [9].)
Main results:
• The NS equations with constant viscosity do not admit a
solution of the above form if b 6= 1.

• A trivial solution is found to hold for all b > 0:
F (x) = G(x) ≡ 0, Ω(x) ≡ const.

• No nontrivial solutions exist for b ≥ 2.
• No nontrivial stable solutions exist for 1 < b < 2.
• Explicit general solution is found for b = 1

Ω ≡ Cω, F = c
√
x(1− x); G = c

(1− 2x)
√

1 + x

2
√
x

.

• Stable solutions for 0 < b < 1 computed numerically:

Figure 7: F , Ω, G for b = 0.1, . . . , 0.9 (blue) and b = 1 (red).
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