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1. Introduction∗  
 Detecting and tracking mesocyclones from Doppler radial-
velocity fields are very important for tornado-related severe 
weather warning operations, but the involved tasks often 
encounter enormous difficulties especially when 
mesocyclones are poorly resolved in the far radial ranges or 
confused with other signatures or data artifacts (such as noisy 
or improperly dealiased velocities) in radial-velocity fields. 
To overcome the encounter difficulties, various automated 
mesocyclone detection methods and algorithms have been 
developed by many investigators (Stumpf et al. 1998; Smith 
and Elmore 2004; Liu et al. 2007; Newman et al. 2013; Miller 
et al. 2013). These methods rely on the assumption that a 
mesocyclone is behaving as a Rankine vortex and identify it 
as an object with no attempt to diagnose the detailed vortex 
wind field. To diagnose the full storm wind field, Gao et al. 
(2013) adapted a real-time three-dimensional variational data 
assimilation (3DVar) system and showed the value of the 
wind field assimilated from multiple Doppler radar data. This 
3DVar system compares favorably to the methods described 
above with regards to identifying storm-scale mid-level 
circulations, but the circulation may not be fully resolved due 
to the isotropic univariant background covariance used for 
each velocity component in the cost-function. It is possible to 
improve the mesocyclone wind analysis by formulating the 
background covariance with vortex-flow dependences in a 
moving frame following the mesocyclone. This approach is 
presented in this paper.  
 
2. Vortex wind analysis  
 To resolve the mesocyclone, a new method is developed 
with the following three key components: (a) an algorithm for 
estimating the vortex center of the mesocyclone on a selected 
tilt of radar radial-velocity scan, (b) a vortex-flow-dependent 
background error correlation function formulated for the 
vortex wind analysis over the mesocyclone area on the 
selected tilt, and (c) the square root of the vortex-flow-
dependent background error covariance matrix derived 
analytically to precondition the cost-function and thus 
enhance the computational efficiency. The method can be 
used as an additional (fourth) step of targeted fine-scale 
analysis after the third step is performed in the radar wind 
analysis system (RWAS, Xu et al. 2015a). It can be also used 
in a stand-alone fashion, as considered in this paper. In this 
case, it is necessary to estimate the environmental mean wind 
and use it as the background wind.  
 The detailed techniques in the three components are 
presented in the following subsections. 
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a. Estimating vortex center location  
 The mesocyclone area is identified as a by-product of the 
automated velocity dealiasing (see Appendix of Xu et al. 
2013) on a selected tilt of radar low-elevation scan. The 
vortex center location is then estimated, also as a by-product 
of the automated velocity dealiasing, and is used here as the 
first guess. From this first guess, the vortex center location is 
further estimated in the mesocyclone area on the selected tilt 
by applying a two-step algorithm (see section 3a of Xu et al. 
2015b) to the data field of dealiased radial-velocity 
observations, denoted by vr

o(r, ϕ), where r is the radial 
distance from the radar and ϕ is the radar beam azimuthal 
angle (positive for clockwise rotation from the y-coordinate 
pointing to the north) on the selected tilt. As by-products, the 
maximum tangential velocity VM for the vortex and its radial 
distance RM from the vortex center are estimated [see (3)-(4) 
of Xu et al. 2015b]. 
 By assuming that the vortex moves mainly with the 
environment mean wind, the vortex center moving velocity 
estimated by the time change rate of vortex center location 
(on the same tilt from the previous to the current volume 
scan) will be used as the background wind, denoted by (ub, 
vb). The radial component of (ub, vb) is given by  
 
  vr

b = (ubsinϕ + vbcosϕ)cosθ, 
 
where θ is the slope angle of radar beam relative to the Earth 
surface beneath the observation point, and the projection of 
the background vertical velocity is negligible for θ < 5o. 
 
b. Vortex-flow-dependent background error covariance 
 The control variables used for the vortex wind analysis are 
the radial velocity, denoted by VR (> 0 in the outward 
direction), and tangential velocity, denoted by VT (> 0 in the 
counterclockwise direction), of the vortex part of the 
mesocyclone wind field. This vortex part is an incremental 
wind field, denoted by (∆u, ∆v), with respect to (ub, vb). In the 
local (x, y)-coordinate system centered at the estimated vortex 
center, denote by (rc, ϕc), on the selected tilt, (∆u, ∆v) is 
related to (VR, VT) by  
 
  (∆u, ∆v) = (VRcosß  - VTsinß, VRsinß + VTcosß),     (1) 
 
where ß ≡ tan-1(y/x). The radar observed radial component of 
(∆u, ∆v) can be modeled by 
 
  vr = (∆usinϕ + ∆vcosϕ)cosθ  
       = [VRsin(ϕ + ß) + VTcos(ϕ + ß)]cosθ. (2) 
 
Here, again, the projection of the vertical velocity w is 
neglected since θ is small (< 5o) and w is not analyzed.  
 The cost-function for the vortex wind analysis has the 
following form: 
 



 

  J = aTB-1a/2  + (Ha - d)TO-1(Ha - d)/2, (3) 
 
where a ≡ (aR

T, aT
T)T, aR (or aT) is the state vector of VR (or 

VT), ( )T denotes the transpose of ( ), B is the background error 
covariance matrix, O is the observation error covariance 
matrix, H is the observation operator expressed in (2), and d 
is the innovation vector, that is, the state vector of vr

i ≡ vr
o - 

vr
b. The observation errors are assumed to be uncorrelated 

between different points, so O = σo
2I, where σo

2 is the 
observation error variance and I is the unit matrix in the 
observation space.  
 The random vector fields of background wind errors, 
denoted by (εR, εT), are assumed to have zero mean, that is, 
<εT> = <εR> = 0 where <(•)> denotes the statistical mean of 
(•). In addition, εR and εT are assumed to be not correlated 
and nearly homogeneous and isotropic in the following 
transformed polar coordinates: 
 
  ρ ≡ l-1ln(1 + R/Rc),  (4a) 
  φ ≡ ß/Φ, (4b) 
 
where R = |x| = (x2 + y2)1/2, l and Φ are the scaling factors for 
ρ and φ, respectively, and Rc is the scaling factor for R and is 
set to Rc = 1 km according the averaged horizontal resolution 
of radar radial-velocity observations.  
 The above assumed nearly homogeneity and isotropy 
imply that the covariance tensor function for ε  ≡ (εR, εT)T has 
the following diagonal form: 
 
  B ≡ <ε iε j

T> = (BR, BT)diag,  (5a)  
 
The two diagonal components of B are modeled by   
 
  BR = σR

2C(ρi, ρj; φi - φj),  
  BT = σT

2C(ρi, ρj; φi - φj), (5b) 
 
where σR (or σT) is the standard deviation of εR (or εT), and 
C(ρi, ρj; φi - φj) is a pseudo-correlation function constructed 
by  
 
  C(ρi, ρj, φi - φj) = C1(ρi, ρj)C2(φi - φj),  (6a) 
  C1(ρi, ρj) = exp[-(ρi - ρj)2/2] - exp[-(ρi + ρj)2/2], (6b)  
  C2(φi - φj) = A0

-1∑nexp[-(φi - φj - 2nπ/Φ)2/2] 
   ≈ exp[-(φi - φj)2/2]  for -π/Φ ≤ φi - φj ≤ π/Φ and Φ ≤ 1, 
    (6c)  
 
where A0 = ∑nexp[-2(nπ)2/Φ2] > 1 to ensure C2(0) = 1, and ∑n 
denotes the summation over integer n from -∞ to ∞. For Φ ≤ 
1, A0 ≈ 1 and the summation in (6c) can be truncated to a 
single term as shown in the last step of (6c).  
 In (6b), the Gaussian correlation function is modified by 
subtracting its mirror image obtained by mirror-reflecting the 
corrected point ρi (or ρj) with respect to ρ = 0, so C1(ρi, ρj) 
can have the desired property of C1(ρi, ρj) = 0 for ρi = 0 or ρj 
= 0 to ensure the analyzed VR and VT always approach to zero 
toward the vortex center. In (6c), the Gaussian correlation 
function is extended periodically over the periodic domain of 
-π/Φ < φ ≤ π/Φ in (6c). The reduced form of C2(φi - φj) in the 
last step of (6c) will be used with Φ = 1. The formulations in 
(6) indicate that C(ρi, ρj, φi - φj) is nearly homogeneous and 

isotropic when ρi > 1 and ρj > 1 and becomes virtually 
homogeneous and isotropic when ρi > 2 and ρj > 2 in the 
transformed (ρ, φ)-space but is stretched in the azimuthal 
direction along the curved vortex flow in the original (x, y)-
space. 
 Since the radial de-correlation length equals to 1 in ρ, the 
associated radial de-correlation length in the physical space 
can be estimated by Rcexp[l(ρ + 1/2)] - Rcexp[l(ρ - 1/2)] = 
2Rsinh(l/2). The radial de-correlation length in the physical 
space is thus a linear function of R, which is similar to the 
azimuthal de-correlation arc length, that is, ΦR as a linear 
function of R. With this property, the correlation structure 
defined by C(ρi, ρj, φi - φj) as a function of xj for given xi is 
nearly invariant in shape but its size increases linearly with 
|xi|. When |xi| reaches the boundaries of the nested domain (of 
2L×2L with L = 10 km) the radial de-correlation length in the 
physical space increases to 2Lsinh(l/2) ≈ 6 km (for l = ½) and 
the azimuthal de-correlation arc length increases to ΦL = 10 
km (for Φ = 1). These increased de-correlation lengths around 
the nested domain boundaries should be compatible with the 
error de-correlation length for the mesoscale background flow 
outside the nested domain.  
 
c. Square root of background error covariance  
 The square root of the background error covariance matrix 
can be derived analytically as shown below. First, one can 
verify that the correlation functions defined in (6b) and (6c) 
can be expressed by the following integrals: 
 

  C1(ρi, ρj) = ∫0
∞P1(ρi, ρs)P1(ρs, ρj)dρs, (7a) 

  C2(φi - φj) = ∫-π
π
P2(φi - φs)P2(φs - φj)dφs,  (7b) 

    
where P1(ρi, ρs) ≡ (2/π)1/4{exp[-(ρi - ρs)2] - exp[-(ρi + ρs)2]}, 
    (8a) 
  P2(φ) ≡ (2/π)1/4A0

-1/2∑nexp[-(φ - 2nπ/Φ)2]  
       ≈ (2/π)1/4exp(-φ2)  for -π/Φ ≤ φ ≤ π/Φ and Φ ≤ 1. (8b) 
 
The truncation error for the approximation in the last step of 
(8b) is within ±exp(-π2/Φ2), and exp(-π2/Φ2) << 1 for Φ ≤ 1.  
 For the wind analyses performed in this paper, the two 
correlated points xi and xj are confined within the range circle 
of R = √2L that encircles the nested analysis domain, so ρi and 
ρj are confined between 0 and ρmax ≡ l-1ln(1 + √2L/Rc) = 5.435 
(for L = 10 km). Note that the integrand P1(ρi, ρs)P1(ρs, ρj) in 
(7a) becomes negligibly small as ρs > ρmax + 2 for ρi and ρj 
confined between 0 and ρmax. This implies that the integration 
range in (7a) can be reduced from 0 ≤ ρs < ∞ to 0 ≤ ρs ≤ ρmax 
+ 2, so the integral in (7a) can be discretized into the 
following form: 
 
  C1(ρi, ρj) ≈ ∑s’P1(ρi, ρs’)P1(ρs’, ρj)∆ρ = ∑s’P1is’P1s’j, (9) 
 
where P1is’ ≡ P(ρi, ρs’)(∆ρ)1/2, P1s’j ≡ P(ρs’, ρj)(∆ρ)1/2, ∆ρ is 
the grad spacing of discretized ρs’ = (s’ + ½)∆ρ, ∑s’ denotes 
the summation over integer s’ from 0 to S ≡ Int[(ρmax + 
2)/∆ρ], and Int[( )] denotes the nearest integer of ( ). To 
adequately resolve P1(ρi, ρs’), ∆ρ should not exceed 1/2. 
 Similarly, the convolution integral in (7b) can be 
discretized into the following form: 



 

 
  C2(φi - φj) ≈ ∑s”P2is”P2s”j, (10) 
 
where P2is” ≡ P2(φi - s”∆φ)(∆φ)1/2, P2s”j ≡ P2(s”∆φ - φj)(∆φ 

)1/2, ∆φ = π/(MΦ) is the grad spacing for discretized φs” = 
s”∆φ, and ∑s” denotes the summation over integer s” from 1 - 
M to M. To adequately resolve P2(φ), ∆φ should not exceed 
1/2, so M must be larger than π/Φ. The truncated form of 
P2(φ) at the last step of (8b) is used to compute P2is” and P2s”j 
for Φ = 1. 
 Substituting (9) and (10) into (6a) gives  
 
  C(ρi, ρj, φi - φj) ≈ ∑s’∑s”P1is’P1s’jP2is”P2s”j = ∑sPisPsj, (11a) 
 
where Pis ≡ P1is’P2is” and the index s counts through all the 
grid points of (s’, s”) over the two-dimensional control-
variable domain with 0 ≤ s’ ≤ S and 1 - M ≤ s” ≤ M. The 
matrix form of (11a) is  
 
  C = PPT, (11b) 
 
where the ijth element of C is given by C1(ρi - ρj)C2(φi - φj) 
with the index i (or j) counting through all the grid points 
over the two-dimensional analysis domain except for the 
central grid point (at the vortex center where ∆u and ∆v must 
be zero), and the isth element of P is given by Pis = P1isP2is = 
P1(ρi, ρs)P2(φi - φs)(∆ρ∆φ)1/2 with the index s counting 
through all the grid points of (s’, s”). As shown in (11b), P is 
an analytically constructed square root of C. 
 For the selected values of l = ½, Φ = 1 and Rc = 1 km, the 
dimension of (s’, s”) depends on (∆ρ, ∆φ) – the grid 
resolutions of the control-variable domain. Clearly, choosing 
relatively large (∆ρ, ∆φ) can reduce the dimension of (s’, s”) 
and thus improve the computational efficiency. On the other 
hand, ∆ρ and ∆φ should not exceed 1/2 in order to adequately 
resolve P1(ρ) and P2(φ). As an optimal trade-off, we set ∆ρ = 
1/2 and ∆φ = π/(9Φ) (< 1/2). This gives S = 15 and M = 9, so 
the dimension of (s’, s”) is 16×18 = 288, and the dimension of 
matrix P indexed by (s, i) is 288×[(2L/∆x + 1)2 - 1], where ∆x 
is the grid spacing for the analyzed fields in the nested 
domain excluding the grid point at the vortex center. With the 
above discretization, the correlation function constructed from 
the square root matrix P by using (11) is almost identical to 
the original correlation function formulated in (6), and the 
maximum difference is well within 1%.  
 Substituting (11) into (5b) gives B = (σR

2C, σT
2C)diag = 

(σRP, σTP)diag(σRPT, σTPT)diag, so B1/2 ≡ (σRP, σTP)diag is a 
root square of B satisfying B1/2BT/2 = B. Substituting a = B1/2c 
with O = σo

2I into (3) gives 
 
  J = |c|2/2 + |H’c - d/σo |2/2, (12) 
 
where H’ = σo

-1HB1/2 is the σo-scaled radial-velocity 
observation operator for the transformed control vector c ≡ 
(cR

T, cT
T)T, and the two components of the partitioned state 

vector a ≡ (aR
T, aT

T)T are related to cR and cT
 by   

   
  aR

 = σRPcR, (13b) 
  aT = σTPcT. (13c) 
 

 Substituting (13) into (11) gives 
 
  ∆u(xi) = σRcosßi∑sPiscRs - σTsinßi∑sPiscTs, (14a) 
  ∆v(xi) = σRsinßi∑sPiscRs + σTcosßi∑sPiscTs, (14a) 
 
where xi denotes the ith grid point in the nested domain.  
 Substituting (14) into (2) gives 
 
  vr(xi) = σR∑sRiscRs + σT∑sTiscTs,   
  
where xi denotes the ith observation point over the nested 
domain, Ris = cosθisin(ϕi + ßi)Pis and Tis = cosθicos(ϕi + 
ßi)Pis. Here, H’ = σo

-1HB1/2 is derived analytically in the 
form of H’ = (σRR, σTT)/σo with the isth element of R (or T) 
given by Ris (or Tis). Note that xi can be any point in the 
continuous space of x excluding the vortex center, so the 
analytical form of H’ can be applied to continuous 
observations to construct a more accurate integral-form 
observation operator.  
 Since the nested domain is small, cT and cR are 
constructed on a 16×18 uniform (ρ, φ)-grid with ∆ρ = 1/2 to 
cover the range of 0 ≤ ρ ≤ ρmax + 2 and ∆φ = π/(9Φ) (< 1/2) 
to cover the entire range of -π/Φ < φ ≤ π/Φ. In this case, 
although the observation space dimension can exceed 104, 
the control-vector space dimension is merely 2×16×18 = 
576, so the preconditioned cost-function in (12) can be 
minimized efficiently by using the conjugate-gradient 
descent algorithm. Substituting the minimizer c back into 
(14) gives the analyzed vortex wind field (∆VR, ∆VT). In 
particular, the vortex analysis takes less than 6 seconds of 
Central Processing Unit (CPU) time.  
 For the illustrative examples presented in the next section, 
the error standard deviation for the dealiased radial-velocity 
observations is set to σo = 2 ms-1 in the cost-function, and this 
setting is the same as that used to estimate the super-
observation error standard deviation in section 3.3 of Xu et al. 
(2015a). Since the background wind (ub, vb) is uniform in the 
nested analysis domain, the background wind errors can be as 
large as the true vortex winds. The maximum of the vortex 
winds estimated from vr

o(r, ϕ) is VM ≈ 45 ms-1, so σT = σR = 
20 ms-1 can be used for constructing the preconditioned cost-
function in (12). 
 
3. Examples 
 The method has been applied in a stand-alone fashion to 
the KTLX radial-velocity scans of the tornadic mesocyclone 
and its produced EF5 tornado that struck the cities of 
Newcastle and Moore, Oklahoma in the afternoon (local 
time between 2:45pm and 3:35pm) on 20 May 2013. As an 
example, three sequentially analyzed vortex wind fields are 
plotted in Fig. 1 by the color-scaled arrows superimposed on 
the radial-velocity innovation images from KTLX radar on 
0.5o tilt (around z = 0.67 km) for three consecutive volume 
scans from 2008:42 to 2017:15 UTC 20 May 2013. The 
maximum tangential velocity and its radial distance from the 
vortex center for the vortex wind field in each panel of Fig. 7 
are close to those (VM ≈ 45 ms-1 and RM ≈ 0.5 km) estimated 
directly from the KTLX radial-velocity observations.   
 
 
 



 

 

           

           

 
 
Fig. 1. Analyzed vortex wind fields plotted by color-scaled 
arrows superimposed on the images of radial-velocity 
innovation vr

i (≡ vr
o - vr

b) from KTLX radar on 0.5o tilt 
(around z = 0.67 km) for three consecutive volume scans of 
the tornadic mesocyclone from 2008:42 to 2017:15 UTC 20 
May 2013. The thin green lines in each panel show the 
county boundaries and streets of city Moore. The KTLX 
radar is located at about (x, y) = (29, -2) km outside the 
analysis domain in the first panel. 
 
 
 

  

  

 
 
Fig. 2. As in Fig. 1 but for the analyzed total wind fields 
superimposed on the images of dealiased radial-velocity 
observations vr

o from KTLX radar on 0.5o tilt. 
 
 The total wind fields [that is, the vortex wind fields in Fig. 
1 plus their respective background winds (ub, vb)] are shown 
in Fig. 2 by the color-scaled arrows superimposed on the 
images of dealiased radial-velocity observations vr

o from 
KTLX radar on 0.5o tilt. As shown, the winds were strongest 
in a small area immediately to south and southeast of the 
vortex center in each panel and this high-wind area was 
moving with the tornadic mesocyclone toward city Moore.  



 

 The above results indicate that the total wind fields 
produced by the method can be very useful for nowcasting 
the tornadic mesocyclone and associated high-wind areas. 
The consistency and stability of the method have been 
further examined and well verified by applying the method 
to the entire time series of consecutive data volumes (from 
1951:42 to 2030:00 UTC) for the above case, and the 
detailed results are shown by the movies presented at the 
conference and posted online at the AMS web site.  
 
4. Conclusions 
 This paper reports a recently developed new method for 
analyzing the vortex wind fields from radar observed 
mesocyclones. The method is shown to be computational 
very efficiently and it can retrieve the vortex part of the 
mesocyclone winds from single-Doppler observations. These 
are the strengths of the method. The method is expected to 
work best when the mesocyclone is intense and not too far 
(within 100 km) from the radar, and this is another strength 
of the method. On the other hand, the method may not work 
well when the mesocyclone is small and far from the radar 
where the radar beams become wider than the vortex core 
diameter. The effectiveness and performance of the method 
are demonstrated by examples of analyzed vortex wind 
fields and total wind fields for the Oklahoma tornadic 
mesocyclones observed by the KTLX radar on 20 May 2013. 
With a reliably estimated background wind, the total wind 
field produced by the method can be very useful for 
nowcasting tornadic mesocyclones and associated high-wind 
areas (see Fig. 2). 
 The method can be also incorporated into the existing radar 
wind analysis system (RWAS, Xu et al. 2015a) as an 
additional (fourth) step of targeted fine-scale analysis after the 
third step is performed in the RWAS. This application and 
related performances are presented in Xu et al. (2015b). The 
method is currently extended to analyze three-dimensional 
vortex winds in the Cartesian coordinates from either single-
Doppler or multi-Doppler scans of mesocyclones with the 
background wind error correction functions formulated in a 
slantwise cylindrical coordinate system co-centered with the 
mesocyclone at each vertical level. The progress and 
preliminary results in this direction can be found from the ppt 
file presented at the conference and posted online at the AMS 
web site.  
 
Acknowledgments  
The research work was supported by the ONR Grant 
N000141410281 to the University of Oklahoma (OU). 
Funding was also provided to CIMMS by NOAA/Office of 
Oceanic and Atmospheric Research under NOAA-OU 
Cooperative Agreement #NA17RJ1227, U.S. Department of 
Commerce. 
 
 
REFERENCES 
Gao, J., T. M. Smith, D. J. Stensrud, C. Fu, K. Calhoun, K. L. 

Mnaross, J. Brogden, V. Lakshmanan, Y. Wang, K. W. 
Thomas, K. Brewster, and M. Xue, 2013: A realtime 
weather-adaptive 3DVAR analysis system for severe 
weather detections and warnings. Wea. Forecasting, 28, 
727–745. 

Liu, S., M. Xue, and Q. Xu, 2007: Using wavelet analysis to 
detect tornadoes from doppler radar radial-velocity 
observations. J. Atmos. Oceanic Technol., 24, 344–359. 

Miller, M. L., V. Lakshmanan, and T. M. Smith, 2013: An 
automated method for depicting mesocycone paths and 
intensities. Wea. Forecasting, 28, 570–585.  

Newman, J. F., V. Lakshmanan, P. L. Heinselman, M. B. 
Richman, and T. M. Smith, 2013: Range-correcting 
azimuthal shear in Doppler radar data. Wea. Forecasting, 
28, 194–211.  

Smith, T. M., and K. L. Elmore, 2004: The use of radial 
velocity derivatives to diagnose rotation and divergence. 
Preprints, 11th Conf. on Aviation, Range and Aerospace, 
Hyannis, MA, Amer. Meteor. Soc., P5.6.  

Stumpf, G. J., A. Witt, E. D. Mitchell, P. L. Spencer, J. T. 
Johnson, M. D. Eilts, K. W. Thomas, and D. W. Burgess, 
1998: The National Severe Storms Laboratory mesocyclone 
detection algorithm for the WSR-88D. Wea. Forecasting, 
13, 304–326. 

Xu, Q., K. Nai, S. Liu, C. Karstens, T. Smith and Q. Zhao, 
2013: Improved Doppler velocity dealiasing for radar data 
assimilation and storm-scale vortex detection. Advances in 
Meteorology. vol. 2013, Article ID 562386, 10 pages. 

Xu, Q., L. Wei, K. Nai, S. Liu, R. M. Rabin, and Q. Zhao, 
2015a: A radar wind analysis system for nowcast 
applications. Advances in Meteorology. vol. 2015, Article 
ID 264515, 13 pages. 

Xu, Q., L. Wei and K. Nai, 2015b: Analyzing vortex winds in 
radar observed tornadic mesocyclones for nowcast 
applications. Wea. and Forecasting, (in press). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 


