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1. Introduction∗ 
 It has been well recognized that using a Gaussian function 
with a synoptic-scale de-correlation length to model the 
background error covariance in data assimilation can 
inadvertently hamper the ability of the analysis to assimilate 
mesoscale structures. As a remedy to this problem, a 
superposition of Gaussians has been used for variational data 
assimilation at NCEP with increased computational cost 
(Purser et al. 2003), but the mesoscale features are still 
overly smoothed and inadequately resolved in the analyzed 
incremental fields even in areas covered by remotely sensed 
high-resolution observations, such as those from operational 
weather radars (Liu et al. 2005). This raises an important 
question on how to optimally assimilate high-resolution 
observations, such as those remotely sensed from radars and 
satellites, on the mesoscale and storm scale. Ideally and 
theoretically, if the background error covariance is exactly 
known and perfectly modeled in data assimilation, then all 
different types of observations can be optimally analyzed in 
a single batch at a single step. However, since the 
background error covariance is usually mostly unknown and 
often crudely modeled, a multi-step approach could be more 
effective and efficient than the single-step approach for 
assimilating various types of observations (including 
remotely sensed high-resolution observations) into a high-
resolution mesoscale model. 
 Previously, Xie et al. (2013) proposed a sequential multi-
step variational analysis approach for a multiscale analysis 
system with observations reused in each step in a fashion 
similar to Barnes successive correction scheme. These 
authors noted that the background error covariance should 
change with different steps to incorporate scale-dependent 
information (like the Barnes successive correction scheme) 
but left this issue to future studies for further improvements. 
Gao et al. (2013) adopted a real-time variational data 
assimilation system with a multi-step approach to analyze 
observations of different spatial resolutions sequentially 
from large to small scale with the background error 
covariance tuned/specified empirically in each step, so the 
issue concerning how to objectively estimate the background 
error covariance in each step was still unaddressed. By 
decomposing the cost function to allow the background error 
covariance estimated separately for two different spatial 
scales, Li et al. (2015) formulated a multi-scale variational 
scheme (which is not necessarily sequential) with the 
background error variance assumed to be known for each 
scale [see their (47) and (48)] and with the background error 
decorrelation length set simply to the minimum wavelength 
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resolved in each scale [see their (52) and (53)], but the issue 
on how to estimate the background error covariance was 
again left unaddressed. We believe that this issue is very 
important for a multi-step approach, as the analysis is largely 
determined by the background error covariance in each step. 
 For the traditional single-step variational analysis, the 
background error covariance can be estimated from time 
series (used as an ensemble) of innovation (that is, 
observation minus background in the observation space) by 
using the innovation method (Hollingsworth and Lonnberg 
1986; Hollingsworth and Lonnberg 1986; Xu et al. 2001;  
Xu and Wei 2001, 2002) or from time series of difference 
between two model forecasts verifying at the same time by 
using the NMC method (Parrish and Derber 1992; Derber 
and Bouttier 1999). The background error covariance 
estimated by the above method can be readily used for the 
variational analysis in the first step of a multi-step approach. 
In each subsequent step, however, the background error 
covariance should be re-estimated [or re-computed as shown 
in (1b)] for the updated background, that is, the analysis 
from the previous step. The innovation method can be 
modified and used for the re-estimation if the observations 
used in current step are not previously used and thus are new 
and independent of the new background and if the following 
two conditions are also satisfied (as required by the 
innovation method). (i) The time series of new innovation 
(that is, new observation minus new background) still satisfy 
the ergodicity assumption (and thus can be used as an 
ensemble). (ii) The statistic structures of the new innovations 
remain to be horizontally homogeneous and isotropic. These 
two conditions often cannot be satisfied, as they require that 
the distribution of the observations used in each step is not 
only horizontally homogeneous (or nearly so) but also 
largely fixed in the time series. Thus, the innovation method 
must be simplified with reduced conditions to re-estimate the 
new background error variance only. In particular, as shown 
in (3.5) of Xu et al. (2015), by using the local spatial mean 
(instead of temporal mean) as the ensemble mean, the 
background error variance can be estimated efficiently as a 
smooth function of space from the new innovation field 
(rather than an ensemble collected from a time series) in 
each step of a multi-step approach. The background error de-
correlation length, however, was still not objectively 
estimated but specified empirically in each step of the multi-
step radar wind analysis system of Xu et al. (2015). 
  This study aims to explore a new multi-step approach with 
the background error covariance estimated efficiently and 
updated optimally (or nearly so) in each subsequent step. In 
particular, a two-step variational method is developed for 
idealized one-dimensional cases in section 2 and illustrated 
by numerical examples in section 3. Extensions of this 
approach for real-data applications are discussed in section 
4, followed by conclusions in section 5.  



 

2. Update background error covariance  
 When the variational analysis is formulated optimally 
base on the Bayesian estimation theory (see chapter 7 of 
Jazwinski, 1970), the background state vector b is updated to 
the analysis state vector a by  

  a = b + BHT(HBHT + R)-1d, (1a) 
  
and the background error covariance matrix B is updated to 
the analysis error covariance matrix A by 

  A = B - BHT(HBHT + R)-1HB, (1b) 
 
where R is the observation error covariance matrix, H is the 
(linearized) observation operator, d = y - H(b) is the 
innovation vector, y is the observation vector, H( ) denotes 
the observation operator and H is the linearized H( ). Here, 
(1) provides the precise formulation for updating B to A in 
each step of a multi-step variational analysis, but the 
required computation is impractically expensive for 
operational applications. Thus, the issue encountered here is 
how to simplify (1b) so that A can be estimated efficiently 
with much reduced computational cost. This issue will be 
attacked in this section by formulating a two-step variational 
method for idealized one-dimensional cases. A related issue 
is whether this efficiently estimated A can make the two-step 
analysis more accurate than the single-step analysis of 
observations of different resolutions if the number of 
iterations is not sufficiently large and thus the analysis is not 
truly optimal (which is often the case in operational 
variational data assimilation due to the computational 
constraints even if the background error covariance is 
assumed to be accurately modeled by a superposition of 
Gaussians). This issue will be examined in the next section 
with numerical examples.    
 For simplicity, we consider the following two types of 
observations: (i) coarse-resolution observations uniformly or 
quasi-uniformly distributed over the one-dimensional analysis 
domain of length D along the x-coordinate, and (ii) high-
resolution observations over a fraction of the analysis domain. 
The coarse-resolution observations are analyzed in the first 
step over the entire domain to update the background state b 
to a and error covariance B to A. The high-resolution 
observations are analyzed in the second step over a nested 
domain using the above updated a and A as the new 
background state and error covariance. To complete such a 
two-step variational analysis, the key issue is to estimate A 
efficiently. This is facilitated by the following properties: 
 
I. For a single observation, say, at x = xm, the inverse matrix 
(HBHT + R)-1 in (1b) reduces to (σb

2 + σo
2)-1, so the ijth 

element of A is simply given by  
 
  Aij = σb

2[Cb(xi - xj) - γbCb(xi - xm)Cb(xm - xj)],  (2) 
 
where γb = σb

2/(σb
2 + σo

2), σb
2 (or σo

2) is the background (or 
observation) error variance, Cb(x) is the background error 
correlation function, xi (or xj) denotes the ith (or jth) point in 
the analysis space RN, and N is the number of analysis grid 
points. 
 

II. For M uniformly distributed coarse-resolution observations 
over D in x, (1b) can be transformed into the following 
spectral form in the wavenumber space:  
 
  Sa = S - SPMN

T(PMNSPMN
T + νC)-1PMNS, (3) 

   
where Sa ≡ FNAFN

H, S ≡ FNBFN
H (or C ≡ FMRFM

H) is a 
diagonal matrix in RN (or RM), FN (or FM) is the normalized 
discrete Fourier transformation (DFT) matrix in RN (or RM), 
ν ≡ N/M (> 1), and PMN is a M×N matrix. When ν is an odd 
integer, PMN is simply given by (I, … I) where I is the unit 
matrix in RM. When ν is not an odd integer, PMN is still largely 
composed of I and the detailed formulation can be found in 
(21) of Xu (2011). Since M < N, Sa is not diagonal but its 
nonzero off-diagonal elements are sparse and negligibly 
small. Using (3), Sa can be easily computed from S and C.  
The diagonal part of Sa can be then transformed efficiently by 
the inverse DFT (or simply the inverse discrete cosine 
transformation) back to the physical space in the form of 
σe

2Ca(xi - xj) to estimate the ijth element of A, where σe
2 (= 

constant) and Ca(x) denote the estimated analysis error 
variance and correlation function, respectively. When the 
coarse-resolution observations are not exactly uniform but 
quasi-uniform over the analysis domain, A still can be 
estimated from σe

2Ca(xi - xj) approximately. 
 
III. Setting xi = xj in (2) gives to Aii = σb

2 - ∆σ b
2(xi), where  

 
  ∆σb

2(xi - xm) ≡ γbσb
2Cb

2(xi - xm)  (4) 
 
is the error variance reduction produced by analyzing a single 
observation at x = xm. Note that this error variance reduction 
becomes negligibly small as |xi - xm| increases and renders 
Cb

2(xi - xm) << 1. Thus, if the spacing ∆xco of the M coarse-
resolution observations is sufficiently large to render 
Cb

2(∆xco) << 1, then the error variance reduction produced by 
analyzing the M observations can be estimated by  
 
  ∆σ2(xi) ≤ ∆σbm

2(xi) ≡ ∑m∆σb
2(xi - xm),  (5) 

 
where ∑m denotes the summation over m for the M 
observations. When ∆xco is not sufficiently large and thus 
Cb

2(∆xco) is not very small, ∆σ2(xi) decreases below the upper 
bound ∆σbm

2(xi) on the right-hand side of (5). Now consider 
that σb

2Cb(x) is updated to σe
2Ca(x) by analyzing the M 

coarse-resolution observations according to the above 
property 2, the error variance reduction produced by 
analyzing an additional single observation, say, at x = xm can 
be estimated by  
 
  ∆σe

2(xi - xm) ≡ γeσe
2Ca

2(xi - xm), (6) 
 
where γe = σe

2/(σe
2 + σo

2). Here, (6) is derived similarly to (4), 
but it provides a rough estimate of the error variance 
reduction produced by analyzing the last observation if the M 
observations are sequentially analyzed. A weighted average of 
(4) and (6) can be formulated by 
  
 ∆σbc

2(xi - xm) ≡ (1 - we)∆σb
2(xi) + we∆σe

2(xi), (7) 
 



 

where we = Cb
2(∆xco). When ∆xco is sufficiently large to 

render Cb
2(∆xco) << 1, (7) recovers (4). Using (7), the error 

variance reduction produced by analyzing the M coarse-
resolution observations can be formulated as a function of xi 
by  
 
  ∆σ2(xi) ≈ ∑m∆σbc

2(xi - xm) - σb
2 + σe

2 - c,  (8) 
 
where c is a constant to be determined. Substituting this into 
σa

2(xi) ≡ σe
2 - ∆σ2(xi) gives the following estimated form of 

analysis error variance:  
 
  σa

2(xi) = σe
2 - ∑m∆σeb

2(xi - xm) + c.  (9)  
 
Note that ∑iσa

2(xi)/N is the spatially averaged error variance 
computed from (9) and it should match the value of σe

2 

estimated from the above property II. This gives  
  
  c = ∑m∑i∆σeb

2(xi - xm)/N  
    = (1 - we)γbσb

2∑m∑iCb
2(xi - xm)/N  

        + weγeσe
2∑m∑iCa

2(xi - xm)/N 
    = [(1 - we)γbσb

2∑iCa
2(xi) + weγeσe

2∑iCa
2((xi)]M/N, 

 
where ∑i  denotes the summation over i for all the N analysis 
grad points. The analysis error covariance function is then 
refined from σe

2Ca(xi - xj) to 
 
 σa(xi)σa(xj)Ca(xi - xj), (10) 
 
where σa

2(xi) is estimated in (9). 
 
3. Numerical examples 
 In this section, we use the same observational data source 
(that is, the radial velocities scanned by the NSSL phased 
array radar for the Oklahoma squall line on 2 June 2004) and 
the same model-produced background field as those 
described in section 5.2 of Xu (2007) but with the following 
treatments: (i) The analysis domain length is set to D = N∆x 
= 110.16 km with N = 9x51 = 459 and ∆x = 0.24 km, where 
∆x is the analysis grid resolution and is set to be the same as 
the original radar radial-velocity observation resolution. (ii) 
The M (= 9) coarse-resolution observations are generated by 
uniformly or quasi-uniformly thinning the original 459 
observations over the entire domain of length D (as shown 
by the purple + signs in Fig. 1 for the M uniformly thinned 
coarse-resolution observations), while the M’ (= 76) high-
resolution observations are taken from the remaining 
original observations in a nested domain of length D/6 (as 
shown by the cyan x signs connected by cyan dashed lines in 
Fig. 1 for uniform coarse-resolution observations). (iii) A 
linear spatial variation is estimated from the background 
field and is subtracted from both the observations and 
background field. This last treatment can facilitate the 
periodic extension of the analysis but is unnecessary for a 
real-data application, because the innovation and analysis 
increment are not affected by this treatment and they are 
treated as spatially homogeneous random fields in the 
variational analysis and thus already suitable for periodic 
extension.  

 
Fig. 1. Coarse-resolution observations (c-obs) plotted by 
purple + signs, high-resolution observations (h-obs) plotted 
by cyan x signs connected by dashed cyan lines, background 
field b(xi) plotted by dotted green curve, optimally analyzed  
benchmark field a(xi) plotted by solid red curve, single-step 
analyzed field a20(xi) with 20 iterations plotted by dashed 
black curve, and first-step analyzed field ac(xi) plotted by 
dotted blue curve. The dash-dotted yellow (or brown) curve 
plots the two-step analyzed field a20(xi) with 20 iterations 
and with B updated by σe

2Ca(xi - xj) [or σa(xi)σa(xj)Ca(xi - xj) 
in (10)]. 
 
 

 
Fig. 2. Cb(xi) plotted by solid red curve and Ca(xi) plotted by 
dotted green curve. The dotted blue (or purple) curve plots 
Ca+(xi) [or Ca-(xi)] – the correlation structure intercepted 
across the point marked by the + (or -) sign in Fig. 5a.  
 
 The background error variance is set to be the same as the 
observation error variance, that is, σb

2 = σo
2 (= 2.52 m2s-2). 

The background error correlation function is modeled by a 
periodic extension of the following double Gaussians: 
 
  Cb(x) = ∑i0.6exp[-x2/2L2) + 0.4exp(-2x2/L2) (11) 
 
with L = 42∆x, and the periodic extension is formulated in 
the say way as in (1b) of Xu and Wei (2011). The structure 
of Cb(x) is plotted by the solid red curve in Fig. 2. The 



 

background error power spectrum S(ki) can be easily 
computed from σb

2Cb(x) by the discrete cosine 
transformation [see (12)-(13) of Xu 2011], where ki = i∆k 
denotes the ith discrete wavenumber and ∆k ≡ 2π/D is the 
minimum resolvable wavenumber. The computed power 
spectrum (that forms the diagonal matrix S) is plotted by the 
solid red curve in Fig. 3.  
 

 
Fig. 3. S(ki) plotted by solid red curve and Sb(ki) plotted by 
dotted green curve. 
 
 There are two sets of observations. Both sets consist of M 
coarse-resolution observations and M’ high-resolution 
observations, but the M coarse-resolution observations in the 
first (or second) set are uniformly (or quasi-uniformly) 
distributed. The observation errors are assumed to be 
spatially uncorrelated, so R = σo

2I in RM+M’ for all the 
observations in each set. Since M + M’ (= 9 + 76) is not 
large, the inverse matrix (HBHT + R)-1 can be easily and 
accurately computed. Thus, the optimal analysis can be 
obtained by applying (1a) to all the M + M’ observations 
together and then used as the benchmark to evaluate the 
accuracies of the analyses obtained from the control and test 
experiments for each set.  
 The control experiments also analyze all the M + M’ 
observations together, but the analyses are performed by 
applying the standard conjugate-gradient descent algorithm 
with limited numbers of iterations (to mimic operational 
applications) to minimize the following cost function:    
 
  J = cTBc + |HBc - d|T/σo

2, (12) 
 
where ∆a ≡ a - b is the analysis increment and is related to 
the transformed control vector c by ∆a = Bc. The test 
experiments analyze the M coarse-resolution observations in 
the first step, and then the M’ high-resolution observations in 
the second step. In the first (or second) step, the analysis is 
performed by applying the standard conjugate-gradient 
descent algorithm with limited number of iterations to 
minimize the same form of cost function as in (12) but 
formulated for the M coarse-resolution (or M’ high-
resolution) observations with B constructed by σb

2Cb(x) (or 
updated to A). 

 

 
Fig. 4. (a) Full-matrix structure of Sa. (b) Zoom-in structure 
of Sa. The color contours plot the element value in m2s-2. 
 

 



 

 
Fig. 5. (a) Structure of the benchmark A. (b) Structure of A 
estimated by Aij = σe

2Ca(xi - xj). (c) Structure of A estimated 
by σa(xi)σa(xj)Ca(xi - xj) in (10). The color contours plot the 
value of Aij in m2s-2. 
 
 After the M coarse-resolution observations are analyzed in 
the first step, S is updated to Sa according to (3). As shown 
by the full-matrix structure of Sa in Fig. 4a, Sa is not 
diagonal (due to the fact of M < N) but its nonzero off-
diagonal elements are sparse and negligibly small. The 
diagonal elements of Sa are also negligibly small outside the 
center diagonal segment, as shown by the zoom-in structure 
of Sa in Fig. 4b. Using (3), the diagonal part of Sa can be 
easily computed from S and C. The analysis error power 
spectrum Sa(ki) estimated by the diagonal part of Sa is plotted 
by the dotted green curve in Fig. 3. In comparison with the 
solid red curve plotted for S(ki) in Fig. 3, this dotted green 
curve shows that the background error reduction produced 
by the first-step analysis is largest for ki = 0, decreases 
rapidly as ki increases and becomes nearly zero as ki > k5. 
The inverse discrete cosine transformation of Sa(ki) gives 
σe

2Ca(xi). As shown by the dotted green curve for Ca(xi) 

versus the solid red curve for Cb(xi) in Fig. 2, the error 
correlation function is narrowed and thus the de-correlation 
length is reduced as Cb(xi) is updated by Ca(xi). This is 
simply because the background errors are reduced by the 
first-step analysis mostly in long-wave structures as shown 
by the change of error power spectrum from S(ki) to Sa(ki) in 
Fig. 3.    

 
Fig. 6. True analysis error variance σa

2(xi) (that is, the 
contour value along the diagonal line in Fig. 5a) plotted by 
solid red curve, and analysis error variance σa

2(xi) estimated 
by (9) (that is, the contour value along the diagonal line in 
Fig. 5c) plotted by dotted blue curve. The dotted green line 
plots the constant value of σe

2. 
 
 Fig. 5a shows the structure of the benchmark A that is 
precisely computed by the inverse DFT of Sa. Fig. 5b shows 
the structure of A estimated by Aij = σe

2Ca(xi - xj) from the 
property II in section 2. This estimated A has the same 
coarse-grain structure as the benchmark A in Fig. 5a but it 
cannot capture the detailed variations along the diagonal line 
and adjacent lines. Fig. 5c shows the structure of A 
estimated by Aij = σa(xi)σa(xj)Ca(xi - xj) in (10) from the 
property III in section 2. This estimated A not only has the 
same coarse-grain structure as the benchmark A but also 
captures the dominant variations along the diagonal line and 
adjacent lines. In particular, as shown in Fig. 6, the analysis 
error variance σa

2(xi) estimated by (9) (that is, the contour 
value along the diagonal line in Fig. 5c) is very close to the 
true analysis error variance (that is, the contour value along 
the diagonal line in Fig. 5a). The dotted blue (or purple) 
curve in Fig. 2 shows the correlation structure intercepted 
horizontally across the point marked by the + (or -) sign in 
Fig. 5a. Note that the + (or -) sign in Fig. 5a is collocated 
with a coarse-resolution observation (or is between two 
adjacent coarse-resolution observations). This explains why 
the dotted blue (or purple) curve is slightly wider (or 
narrower) than the dotted green curve. When A is estimated 
by (10), the error correlation structure is still uniformed 
modeled by Ca(x). The error correlation structure in the 
benchmark A is not but nearly uniform and its variations are 
bounded between the dotted blue and purple curves in Fig. 2.  



 

 The analysis produced by the control experiment applied 
to the first set (9 uniform coarse-resolution observations plus 
76 high-resolution observations) with 20 iterations is shown 
by the dashed black curve in Fig. 1. This curve is quite close 
to the benchmark optimal analysis shown by the solid red 
curve in Fig. 1, and the evaluated error is shown by the solid 
red curve in Fig. 7. The analysis produced in the first step by 
the test experiment applied to the 9 uniform coarse-
resolutions observations (in the first data set) with 20 
iterations is shown by the dotted blue curve in Fig. 1. This 
analysis is almost identical to the benchmark optimal 
analysis obtained by applying (1a) directly and only to the 9 
uniform coarse-resolution observations. The dash-dotted 
yellow (or brown) curve in Fig. 1 shows the analysis 
produced by the test experiment applied to the remaining 
high-resolution observations in the second step with 20 
iterations and with B updated by σe

2Ca(xi - xj) in the property 
II [or σa(xi)σa(xj)Ca(xi - xj) in (10)]. These two curves are 
almost identical to each other and they are very close to the 
solid red curve for the benchmark optimal analysis. The 
error evaluated by the difference of the dash-dotted yellow 
(or brown) curve with respect to the benchmark solid red 
curve in Fig. 1 is plotted by the dotted green (or blue) curves 
in Fig. 7. As shown, the analysis error is reduced slightly in 
the test experiment if B is updated by σa(xi)σa(xj)Ca(xi - xj) in 
(10) instead of σe

2Ca(xi - xj) in the property II.  
 

 
Fig. 7. Error e20(xi) of single-step analysis with 20 iterations 
plotted by solid red curve and error e100(xi) of single-step 
analysis with 100 iterations plotted by dotted purple curve.  
error e20(xi) of two-step analysis with 20 iterations plotted by 
The dotted green (or blue) curve plots the error of the two-
step analysis ee20(xi) [or es20(xi)] with 20 iterations and with 
B updated by σe

2Ca(xi - xj) [or σa(xi)σa(xj)Ca(xi - xj) in (10)]. 
The dotted cyan (or brown) curve plots the error of the two-
step analysis ee100(xi) [or es100(xi)] with 100 iterations and 
with B updated by σe

2Ca(xi - xj) [or σa(xi)σa(xj)Ca(xi - xj) in 
(10)]. 
 
 When the number of iterations is increased from 20 to 100 
in the control and test experiments applied to the first set of 
observations, the analysis errors are reduced significantly in 
all the tree experiments, as shown by the dotted purple curve 
(or dotted cyan and brown curves) for the control experiment 

(or the two test experiments). In this case, the error reduction 
is more significant in the control experiment than in the two 
test experiments, but the analysis produced by the control 
experiment is still slightly less accurate than the analyses 
produced by the test experiments. When the number of 
iterations is further increased to 200, all the analyses become 
nearly identical to the benchmark optimal analysis, and the   
analysis produced by the control experiment becomes more 
accurate than the analyses produced by the test experiments. 
 

 

 
Fig. 8. As in Fig. 5a and Fig. 5c but for non-uniform coarse-
resolution observations in the second set. 
 
 The above results remain qualitatively the same as the 
control and test experiments are applied to the second set of 
observations. In this case, the structure of the benchmark A 
is computed precisely from (1b) and is shown in Fig. 8a, 
while Fig. 8b shows the matrix structure of A estimated by 
Aij = σa(xi)σa(xj)Ca(xi - xj) in (10) from the property III in 
section 2. This estimated A not only has the same coarse-
grain structure as the benchmark A but also captures the 
dominant variations along the diagonal line and adjacent 



 

lines. This feature is the same as seen from Fig. 5 for the 
results obtained from the uniform coarse-resolution 
observations in the first set. Again, as shown in Fig. 9, the 
analysis error variance σa

2(xi) estimated by (9) (that is, the 
contour value along the diagonal line in Fig. 8b) is very 
close to the true analysis error variance (that is, the contour 
value along the diagonal line in Fig. 8a). The analysis errors 
are evaluated for the control experiment and test experiments 
in the same way as those for the first set of observations. As 
shown in Fig. 10, these errors have the same features as 
those shown and compared in Fig. 7.  

 
Fig. 9. As in Fig. 6 but for the second set observations. 
 
 

 
Fig. 10. As in Fig. 7 but for the second set of observations. 
 
 
4. Real-data applications 
 The property I in (2) and property III formulated by (9)-
(10) can be readily extended and applied to a single 
observation in three-dimensional space. The property II 
formulated in (3) in the one-dimensional wavenumber space 
can be extended to the two-dimensional horizontal 
wavenumber space similarly to those derived in section 2.3 of 
Xu (2011) and demonstrated in section 3 of Xu and Wei 

(2011), while the error correlation structure in the vertical 
direction may be kept the same and not updated after the 
coarse-resolution observations are analyzed in the first step. 
With the above extensions, the two-step approach developed 
in section 2 can be applied to observations of different 
horizontal resolutions in the three-dimensional space to 
improve the existing multi-scale variational data assimilation 
methods (Xie et al. 2013; Gao et al. 2013; Xu et al. 2015).  
 
5. Conclusions 
 In this paper, a two-step variational method is developed 
for analyzing observations of different spatial resolutions. The 
effectiveness of this approach is demonstrated for one-
dimensional cases. In particular, the results obtained in 
sections 2 and 3 show, at least for the one-dimensional cases, 
that the analysis error covariance A can be estimated 
efficiently and used to update the background error 
covariance B after the coarse-resolution observations are 
analyzed in the first step. This can facilitate the two-step 
approach and make the two-step analysis more accurate than 
the single-step analysis of observations of different 
resolutions when the number of iterations is not sufficiently 
large and thus the single-step analyses is not truly optimal. 
Constrained by computational resources and capabilities, 
limited numbers of iterations are often used in variational data 
assimilation for operational applications. The analyses are 
thus not truly optimal and often overly smooth mesoscale 
features, especially when observations of different resolutions 
are analyzed in a single step, even if the background error 
covariance is accurately modeled. To improve this, the two-
step method developed in this paper can and will be extended 
for real data assimilation applications. Specifically, as 
explained in section 4, the two-step method can be extended 
to analyze observations of different horizontal resolutions in 
the three-dimensional space more effectively and efficiently 
than the conventional single-step approach. The detailed 
formulations for these extensions are currently being 
developed and will be tested in our continued future studies.  
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