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1. Introduction

The nonlinear balance equation (NBE) can be a very
useful dynamic constraint for mesoscale data assimilation
because it links the wind or streamfunction field with the
mass field more accurately than the geostrophic balance
(Charney 1955; Bolin 1956). However, retrieving the
streamfunction from the mass field constrained by the NBE
remains to be very challenging and largely unsolved since
the early attempts traced back to 1950s (Bolin 1955;
Miyakoda 1956; Shuman 1957; Arnason 1958; Liao and
Zhou 1962; Bijlsma and Hoogendoorn 1983; Wang and
Zhang 2003). It is well-known mathematically that the
NBE is a special case of the Monge-Amptre's differential
equation. If the geostrophic vorticity is larger than -f/2
(where f is the Coriolis parameter), the NBE is of the
elliptic type with two and only two solutions for given
streamfunction boundary values. If the geostrophic-flow
vorticity is smaller than -f/2 for a constant f'in a local area,
the NBE becomes locally hyperbolic and this complicates
the solution. Because of this complication, there has not
been a method of solution for the NBE with the geostrophic
vorticity decreased below or even close to -f/2 in a local
area.

This study reports three recently developed iterative
methods. They are developed to attack this problem by
rearranging the NBE into a multi-step iterative form based
on the leading order balance in the semi-balance model [see
(2.13) of Xu 1994]. These methods can solve the NBE
efficiently even when the geostrophic-flow vorticity

becomes locally smaller than —f/2 and thus the equation is
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no longer elliptic. The three methods are described in
Section 2, Idealized experiments are performed in section 3
to examine the effectiveness and accuracy of each method.
Application to a hurricane case is presented in Section 4,

followed by a summary in section 5.

2. Methodology
The NBE, V-(/Vy) + 2J,(3:y, d,9) = V¢, can be

written into the following form:

Mwa ¢) = V(fV%U) + 2ny(axw’ aﬂl’) - V2¢: 0,

where M , ) denotes the nonlinear differential operator of
the NBE, v is the nonlinearly balanced streamfunction, and
¢ is the geopotential. The three iterative methods are

described in the following subsections.

2.1. Method 1

The NBE can be rewritten into

VAZy) = V(¢ +K) + V-(yV2),

where Z=f+{=/+ V2, K= |Vy[2, S= 8 + C, V3§’ =

V-(yVZ), V’C=0in D, and C=Zy— (¢ + K + §”) on aD.

The iterative procedure performes the follow steps:

a) Start from &k = 0 and set 1y = Y, = ¢/fin D and dD.

b) Obtain §”; as the internally induced solution from V2§’;
= V-V Z).

¢) Obtain Cy as the externally induced solution from V*C; =
0 in D with the boundary condition of Cy, = Zyy - (¢ + Kj,
+8°) on aD.

d) Compute Z; = f + V> and ensure Z; > 0.5(V2g/f + f)
(by setting Z, = 0.5(V2¢/f + f) if Z; < 0.5(V2¢/f + /) at
any grid points).



e¢) Update ¢ to Yy = (¢ + Ky + Sp)/Z;.
f) Go back to step (b) with & increased by 1 until converge.
In the above formulations, vy, = ¢/f is the global
geostrophic streamfunction (Kuo 1959; Charney and Stern
1962; Schubert et al. 2009). D and dD denote the domain
and domain boundary, respectively. The internally and
externally induced solutions are defined in section 3 of Xu
et al. (2011), and these solutions are obtained by using the
methods in sections 2-4 of Cao and Xu (2011).
Occasionally, the absolute vorticity Z can become very
close to zero or even below zero at a few grid points in a
local area. In this case, Z is adjusted locally to the low
bound of 0.5(V2¢/f + f) in step d), so i can be updated to
Y+ In step e) without becoming locally and spuriously
singular. This low bound can prevent the iterative
procedure from divergence but it will cause the converged
solution ¥ to deviate from the true solution Yy, locally in
and around areas where the true value of Z is below the low

bound.

2.2. Method 2

Method 2 is designed to avoid dividing Z directly in step
e) of the above method 1. In particular, the above step d) is
modified to obtain the increment dy+; to update y; to W

= ) + Oy by minimizing the following cost function:

J(OPyi1) = Nt 0yi1)Zi - (9 + Ky + 874+ Cpldxdy.

2.3. Method 3

Method 3 also uses O+, as the updating variable, but
Sy, is obtained by solving VA(fdyy.;) = Ry in D with
0P+ = 0 on 0D, where Ry is the residual of the NBE from
the previous k™ step. Specifically, starting from & = 0 with
o = g, the method performs the following two steps:
a) Obtain Sy by solving

VA(ftpie1) = Ri = My, ¢) in D

with Y+, =0 on 0D;

b) Update ¢ to Y+ = W + Y+ and go back to step a)
until R, becomes sufficiently small.
By using the identity V(fyp) = V-(/Vy) + V-(yVf), the

NBE can be written into the following perturbation form:

VA(fy) = V-(YV)) - 20(1p, 9,4),

where 1’ = y - v, is the ageostrophic streamfunction, that
is, the perturbation streamfunction with respect to 1,. By
setting 1 = 1y = 1, with f'= constant on the right-hand side,
the above perturbation NBE recovers the vertical
component of the quasi-geostrophic (QG) C-vector
equation in (2.2¢) of Xu (1992). This implies that the
solution obtained in step a) from the initial guess of ¥ =
= 1, that is, Sy, = Y, = ¥’ is simply and essentially the
QG ageostrophic streamfunction. Thus, the solution dy
obtained in step a) from the updated v through each
subsequent iteration adds an incremental streamfunction
(that decreases toward zero as k increases) to the QG
ageostrophic streamfunction toward the final solution oy =

) — 1, where 1 is the nonlinearly balanced streamfunction.

3. Idealized experiments

Idealized experiments are designed first to examine the
accuracy and computational efficiency of each method, and
to evaluate their effectiveness in overcoming the
difficulties caused by the local non-elliptic condition (with
Ge= Vi, < £2).

Fig. 1 shows the true v, denoted by ¥y, constructed
analytically, the corresponding ¢, the geostrophic-flow
vorticity &, = Vzwg, and the near-zero residual of the NBE,
that is, Mwme, ¢). Note that &, becomes smaller than —f/2
in a small area near the upper-right corner in Fig. 1c.

Fig. 2 shows the solution error defined Ay = ¥ - Proe
and the residual error R = M1, ¢) of the NBE for the
solution 3 computed by each method. Table 1 shows the
correlation coefficient (CC) between V-(fVy) + 2J,,(9,1,
d,y) and V%¢, relative RMS error defined by RRE =
My, §)Pdxdy/l[[V-(fVyp)*dxdy, and the CPU time for

each method.



Fig. 1 (@) Prae (10° m’s™), (b) ¢ (107 m’s?), () £ (1057,
and (d) Myres 9) (107 57).
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Fig. 2. (a) AP = ¢ - Prre (10° m%s™) for method 1. (b)
Residual error R = M, ¢) (10% s) for method 1. (c) As in
(a) but for method 2, (d) As in (b) but for method 2. (e) As
in (a) but for method 3. (f) As in (b) but for method 3.

Table 1. CC, RRE and CPU times for three methods

ce RRE CPU time
TRUE 0.999997 | 0.00876 | ©®
Method 1 | 0973981 | 0.23638 | 027
Method2 | 0975421 | 032888 | 23.39
Method3 | 0999602 | 0.02826 | 7.48

4. Application to real data

Method 3 is used to compute the nonlinearly balanced
streamfunction 1 from the geopotential perturbation field
¢ at 260hPa produced by HWRF 6-hour forecast of
Tropical Storm Chantal valid at 1800 UCT on 07/08/2013.
The results are shown in Fig. 3 with CC = 0.9997, RRE =
0.02438 and CPU time =2.19 s.
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Fig. 3 (a) ¢ (10 m’s™), (b) y (10’ m*™),, and (c) R =
My, ) 1o s‘z) computed from the HWRF 6-hour
forecasted ¢ at 260hPa for Tropical Storm Chantal at
1800 UCT on 07/08/2013.

5. Summary
The three methods have been tested with idealized and
real cases in which (, = Vzwg becomes locally less than —f/2.

All three methods can work as long as {, = Vzwg > —f/2.



Method 1 is most efficient but least accurate and it requires
Z; > 0. Method 2 is least efficient. Method 3 is most
accurate in all cases, but it needs a further modification
(beyond this study) to improve its applicability to

mesoscale flows.
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