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1. Introduction∗	
  
 The nonlinear balance equation (NBE) can be a very 

useful dynamic constraint for mesoscale data assimilation 

because it links the wind or streamfunction field with the 

mass field more accurately than the geostrophic balance 

(Charney 1955; Bolin 1956). However, retrieving the 

streamfunction from the mass field constrained by the NBE 

remains to be very challenging and largely unsolved since 

the early attempts traced back to 1950s (Bolin 1955; 

Miyakoda 1956; Shuman 1957; Arnason 1958; Liao and 

Zhou 1962; Bijlsma and Hoogendoorn 1983; Wang and 

Zhang 2003). It is well-known mathematically that the 

NBE is a special case of the Monge-Amptre's differential 

equation. If the geostrophic vorticity is larger than -f/2 

(where f is the Coriolis parameter), the NBE is of the 

elliptic type with two and only two solutions for given 

streamfunction boundary values. If the geostrophic-flow 

vorticity is smaller than -f/2 for a constant f in a local area, 

the NBE becomes locally hyperbolic and this complicates 

the solution. Because of this complication, there has not 

been a method of solution for the NBE with the geostrophic 

vorticity decreased below or even close to -f/2 in a local 

area.  

 This study reports three recently developed iterative 

methods. They are developed to attack this problem by 

rearranging the NBE into a multi-step iterative form based 

on the leading order balance in the semi-balance model [see 

(2.13) of Xu 1994]. These methods can solve the NBE 

efficiently even when the geostrophic-flow vorticity 

becomes locally smaller than –f/2 and thus the equation is 
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no longer elliptic. The three methods are described in 

Section 2, Idealized experiments are performed in section 3 

to examine the effectiveness and accuracy of each method. 

Application to a hurricane case is presented in Section 4, 

followed by a summary in section 5.  

 

2. Methodology  

The NBE, ∇⋅(f∇ψ) + 2Jxy(∂xψ, ∂yψ) = ∇2φ, can be 

written into the following form:  

 

N(ψ, φ) ≡ ∇⋅(f∇ψ) + 2Jxy(∂xψ, ∂yψ) - ∇2φ = 0,  

 

where N( , ) denotes the nonlinear differential operator of 

the NBE, ψ is the nonlinearly balanced streamfunction, and 

φ is the geopotential. The three iterative methods are 

described in the following subsections.  

 

2.1. Method 1 

 The NBE can be rewritten into  

 

  ∇2(Zψ) = ∇2(φ + K) + ∇⋅(ψ∇Z),  

 

where Z = f + ζ = f + ∇2ψ, K = |∇ψ|2/2, S = S’ + C, ∇2S’ = 

∇⋅(ψ∇Z), ∇2C = 0 in D, and C = Zψ – (φ + K + S’) on ∂D. 

The iterative procedure performes the follow steps: 

a) Start from k = 0 and set ψ0 = ψg ≡ φ/f in D and ∂D.  

b) Obtain S’k as the internally induced solution from ∇2S’k 

= ∇⋅(ψk∇Zk).  

c) Obtain Ck as the externally induced solution from ∇2Ck = 

0 in D with the boundary condition of Ck = Zkψk - (φ + Kk 

+ S’k) on ∂D.  

d) Compute Z k = f + ∇2ψk and ensure Z k ≥ 0.5(∇2φ/f + f) 

(by setting Zk = 0.5(∇2φ/f + f) if Z k < 0.5(∇2φ/f + f) at 

any grid points).    
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e) Update ψk to ψk+1 = (φ + Kk + Sk)/Zk.  

f) Go back to step (b) with k increased by 1 until converge. 

 In the above formulations, ψg ≡ φ/f is the global 

geostrophic streamfunction (Kuo 1959; Charney and Stern 

1962; Schubert et al. 2009). D and ∂D denote the domain 

and domain boundary, respectively. The internally and 

externally induced solutions are defined in section 3 of Xu 

et al. (2011), and these solutions are obtained by using the 

methods in sections 2-4 of Cao and Xu (2011).    

 Occasionally, the absolute vorticity Z can become very 

close to zero or even below zero at a few grid points in a 

local area. In this case, Z is adjusted locally to the low 

bound of 0.5(∇2φ/f + f) in step d), so ψk can be updated to 

ψk+1 in step e) without becoming locally and spuriously 

singular. This low bound can prevent the iterative 

procedure from divergence but it will cause the converged 

solution ψ to deviate from the true solution ψTrue, locally in 

and around areas where the true value of Z is below the low 

bound.  

 

2.2. Method 2 

 Method 2 is designed to avoid dividing Z directly in step 

e) of the above method 1. In particular, the above step d) is 

modified to obtain the increment δψk+1 to update ψk to ψk+1 

= ψk + δψk+1 by minimizing the following cost function: 

 

  J(δψk+1) ≡ ∫∫[(ψk+δψk+1)Zk - (φ + Kk + S’k + Ck)]2dxdy.  

	
  

	
  

2.3. Method 3 

 Method 3 also uses δψk+1 as the updating variable, but 

δψk+1 is obtained by solving ∇2(fδψk+1) = Rk in D with 

δψk+1 = 0 on ∂D, where Rk is the residual of the NBE from 

the previous kth step. Specifically, starting from k = 0 with 

ψ0 = ψg, the method performs the following two steps:  

a) Obtain δψk+1 by solving  

 

 ∇2(fδψk+1) = Rk ≡ N(ψk, φ) in D  

 

with δψk+1 = 0 on ∂D;  

b) Update ψk to ψk+1 = ψk + δψk+1 and go back to step a) 

until Rk becomes sufficiently small. 

 By using the identity ∇2(fψ) = ∇⋅(f∇ψ) + ∇⋅(ψ∇f), the 

NBE can be written into the following perturbation form: 

 

∇2(fψ’) = ∇⋅(ψ∇f) - 2Jxy(∂xψ, ∂yψ),  

 

where ψ’ ≡ ψ - ψg is the ageostrophic streamfunction, that 

is, the perturbation streamfunction with respect to ψg. By 

setting ψ = ψ0 = ψg with f = constant on the right-hand side, 

the above perturbation NBE recovers the vertical 

component of the quasi-geostrophic (QG) C-vector 

equation in (2.2c) of Xu (1992). This implies that the 

solution obtained in step a) from the initial guess of ψ = ψ0 

= ψg, that is, δψ1 = ψ1 = ψ’ is simply and essentially the 

QG ageostrophic streamfunction. Thus, the solution δψk+1 

obtained in step a) from the updated ψk through each 

subsequent iteration adds an incremental streamfunction 

(that decreases toward zero as k increases) to the QG 

ageostrophic streamfunction toward the final solution δψ ≡ 

ψ – ψg where ψ is the nonlinearly balanced streamfunction. 

	
  

3. Idealized experiments	
   	
  

 Idealized experiments are designed first to examine the 

accuracy and computational efficiency of each method, and 

to evaluate their effectiveness in overcoming the 

difficulties caused by the local non-elliptic condition (with 

ζg ≡ ∇2ψg < -f/2).  

 Fig. 1 shows the true ψ, denoted by ψTrue, constructed 

analytically, the corresponding φ, the geostrophic-flow 

vorticity ζg ≡ ∇2ψg, and the near-zero residual of the NBE, 

that is, N(ψTrue, φ). Note that ζg becomes smaller than –f/2 

in a small area near the upper-right corner in Fig. 1c.  

 Fig. 2 shows the solution error defined ∆ψ ≡ ψ - ψTrue 

and the residual error R ≡ N(ψ, φ) of the NBE for the 

solution ψ computed by each method. Table 1 shows the 

correlation coefficient (CC) between ∇⋅(f∇ψ) + 2Jxy(∂xψ, 

∂yψ) and ∇2φ, relative RMS error defined by RRE ≡ 

∫∫[N(ψ,, φ)]2dxdy/∫∫[∇⋅(f∇ψ)]2dxdy, and the CPU time for 

each method.  
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Fig. 1 (a) ψTrue (106 m2s-1), (b) φ (102 m2s-2), (c) ζ (10-4 s-1), 

and (d) N(ψTrue, φ) (10-8 s-2).  

 

Fig. 2. (a) ∆ψ ≡ ψ - ψTrue (106 m2s-1) for method 1. (b) 

Residual error R ≡ N(ψ, φ) (10-8 s-2) for method 1. (c) As in 

(a) but for method 2, (d) As in (b) but for method 2. (e) As 

in (a) but for method 3. (f) As in (b) but for method 3.  

Table 1. CC, RRE and CPU times for three methods 

 
CC RRE CPU time 

(s) TRUE 0.999997 0.00876 

Method 1 0.973981 0.23638 0.27 

Method 2 0.975421 0.32888 23.39 

Method 3 0.999602 0.02826 7.48 

 

4. Application to real data  

 Method 3 is used to compute the nonlinearly balanced 

streamfunction ψ from the geopotential perturbation field 

φ’ at 260hPa produced by HWRF 6-hour forecast of 

Tropical Storm Chantal valid at 1800 UCT on 07/08/2013. 

The results are shown in Fig. 3 with CC = 0.9997, RRE = 

0.02438 and CPU time = 2.19 s.  

 

 

 

Fig. 3 (a) φ’ (102 m2s-2), (b) ψ (107 m2s-1),, and (c) R ≡ 

N(ψ,, φ) (10-10 s-2) computed from the HWRF 6-hour 

forecasted  φ  at 260hPa for Tropical Storm Chantal at 

1800 UCT on 07/08/2013.  

 

5. Summary  

 The three methods have been tested with idealized and 

real cases in which ζg ≡ ∇2ψg becomes locally less than –f/2. 

All three methods can work as long as ζg ≡ ∇2ψg > –f/2. 

(a)	
   (b)	
  

(c)	
   (d)	
  

(a)	
   (b)	
  

(c)	
  

(e)	
   (f)	
  

(a)	
   (b)	
  

(c)	
   (d)	
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Method 1 is most efficient but least accurate and it requires 

Zk > 0. Method 2 is least efficient. Method 3 is most 

accurate in all cases, but it needs a further modification 

(beyond this study) to improve its applicability to 

mesoscale flows. 
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