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Abstract 

The meteorological community makes extensive use of the Model Evaluation Tools (MET) 
developed by National Center for Atmospheric Research (NCAR) for numerical weather 
prediction model verification through grid-to-point, grid-to-grid and object-based domain level 
analyses.  MET Point-Stat is used to perform traditional grid-to-point verification.  MET Grid-
Stat has been used to perform grid-to-grid neighborhood verification to account for the 
uncertainty inherent in high resolution forecasting, and MET Method for Object-based 
Diagnostic Evaluation (MODE) has been used to develop techniques for object-based spatial 
verification of high resolution forecast grids for continuous meteorological variables. 

High resolution modeling requires more focused spatial and temporal verification over parts of 
the domain.  With a Geographical Information System (GIS), researchers can now consider 
terrain type/slope and land use effects and other spatial and temporal variables as explanatory 
metrics in model assessments.  GIS techniques, when coupled with high resolution point and 
gridded observations sets, allow location-based approaches that permit discovery of spatial and 
temporal scales where models do not sufficiently resolve the desired phenomena, for example, 
turbulence effects or mountain and lee waves. 

In this paper we discuss our initial GIS approach to verify WRF–ARW with a one-kilometer 
horizontal resolution inner domain centered near San Diego, California.  The San Diego area 
contains a mixture of urban, sub-urban, agricultural and mountainous terrain types along with a 
rich array of observational data with which to illustrate our ability to conduct sub-domain 
verification. 
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1. Introduction 

Weather has a significant impact on Army personnel, weapons, tactics and operations; so 
accurate weather forecasts can be a deciding factor in any conflict large or small.  As 
computing technology advanced, the weather forecasting task, once the primary role of a 
human forecaster in theater, shifted to computerized Numerical Weather Prediction (NWP) 
with the human forecaster located far from the area of interest. 

Weather forecast validation has always been of interest to the civilian and military weather 
forecasting community, see for example the reviews by Ebert et al. (2013) and Casati et al. 
(2008) or the guides by Jolliffe and Stephenson (2011) or Wilks (2011).  Along with the 
development of increasingly powerful computing technology, interest in validation shifted 
from the accuracy of human forecasters to the accuracy of the NWP models.  The validation 
of the models, especially high resolution models produced by NWP, has proven to be 
especially difficult when addressing small time and spatial scales (National Research Council 
2010). 

The numerical weather prediction community continues to pursue the development of high 
resolution NWP codes as typified by the current implementation of the Advanced Research 
version of the Weather Research and Forecasting (WRF) (WRF–ARW; Skamarock et al. 
(2008)) model that utilizes Four Dimensional Data Assimilation (FDDA) techniques 
(Stauffer and Seaman 1994; Deng et al. 2009).  The U.S. Army Research Laboratory (ARL) 
is using WRF-ARW as the core of its Weather Running Estimate – Nowcast (WRE–N) to 
investigate methods of ingesting weather observations via FDDA to improve the quality of 
the forecasts.  To show where and how FDDA adds value, we need a means to compare 
battlefield nowcasts produced with FDDA to those produced without FDDA.  By comparing 
these forecasts over the domain using more traditional tools, and spatial and temporal 
comparisons over sub-domains using other tools, we expect that we can quantify the potential 
benefits as well as identifying the means to improve our FDDA approach. (Raby et al. 2012) 

In prior model assessments, ARL employed the Model Evaluation Tools (MET) (NCAR 
2013) developed by the National Center for Atmospheric Research (NCAR) Developmental 
Testbed Center (DTC) for use by the numerical weather prediction community, especially 
users and developers of the WRF model, to help them assess and evaluate the performance of 
the models.  One such example assessment is that of Raby et al.  (2012) who evaluated two 
models to arrive at domain level conclusions about the various strengths and weaknesses of 
these models and their accuracies.  While MET proved useful as an assessment tool for 
forecasts over a regional domain, we found its ability to illuminate model short comings on 
the spatial and temporal scales needed by battlefield commanders to be lacking. 

In another assessment Dumais et al. (2012) evaluated three models that produced three-
dimensional wind fields to arrive at domain level conclusions.  Though Dumais et al. did not 
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employ any of the MET tools in their analysis; their desire was to identify model strengths 
and weaknesses.  Again, they found their ability to draw spatial and temporal conclusions 
lacking.  

 To conduct our investigation, we employed a domain located in the San Diego, California 
region to assess the ability of Geographic Information Systems (GIS) tools and techniques to 
enhance model verification.  For our study, we used the MET tool “Point-Stat” which 
generates data for grid-to-point verification, or verification of a gridded forecast field against 
point-based observations (i.e., surface observing stations, rawinsondes, and other point 
observations).  It provides forecast verification scores for both continuous (e.g., temperature) 
and categorical (e.g., rain) variables with associated confidence intervals.  Confidence 
intervals take into account the uncertainty associated with verification statistics due to 
sampling variability and sample size limitations.  Specifically, we analyzed the matched 
forecast-observation pair output of Point-Stat using a GIS to expand the analysis of the 
WRE–N/FDDA output and point observations within an extremely high resolution terrain 
framework. 

Our assertion (Smith et al. 2013; Smith et al. 2014) is that high-resolution models require 
verification on temporal and spatial scales appropriate for the phenomenon that are being 
forecast.  The atmospheric flows of interest are mountain/valley breezes, sea breezes and 
other flows induced by differences in land surface characteristics.  The traditional 
verification approach used by Point-Stat aggregates the error statistics over the entire 
domain, techniques which produce results that often appear smoothed because of averaging 
and consequently may not show the value added of higher resolution Nowcast output at grid 
resolutions of 1km or less.  More in-depth analysis of the forecast errors are needed to 
deduce the various sub-regimes, temporal and spatial trends which may govern the statistics 
in a way which cannot be seen when the statistics are aggregated over the entire domain.  Our 
principal thesis is that GIS tools may allow us to break the domain into sub-domains 
according to variables such as terrain and land use; sub domains whose data are more 
homogeneous and consequently more amenable to accurate inferences about model 
performance as well as providing a better understanding of model strengths and weaknesses.  

2. Domain and Model 

The ARL WRE–N (Dumais et al. 2004; Dumais and Reen 2013) has been designed as a 
convection-allowing application of the Advanced Research version of the Weather Research 
and Forecast (WRF–ARW) model (Skamarock et al. 2008) and its observation nudging 
FDDA option (Liu et al. 2005; Deng et al. 2009).  For this investigation, we configured 
WRE–N in a multi-nest configuration to produce a fine inner mesh of around 1 km grid 
spacing (i.e.; 9 /3 /1 km) and leveraged an external global model for cold-start initial 
conditions and time-dependent lateral boundary conditions for the outermost nest.  For ARL 
development and testing, this global model has been the National Center for Environmental 
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Prediction’s Global Forecast System (GFS) model (Environmental Monitoring Center 2003).  
The WRE–N is essentially a rapid-update cycling application of WRF–ARW with FDDA, 
and optimally can refresh itself at intervals up to hourly (dependent upon the observation 
network) (Dumais et al. 2012; Dumais and Reen 2013). 

For this particular experiment, the model was run with a base time of 1200 UTC and 
generated 24 hourly outputs for five days in February and March of 2012.  The modeling 
domain is depicted in Figure 1. 

, 
Figure 1:  Triple-nested configuration with an outer nest mesh of 9km (1566 km by 1566 km); the middle nest 
mesh of 3km (720 km by 720 km); and, the inner nest mesh of 1km spacing (126 km by 126 km) centered over 
Southern California near San Diego. 

The initial conditions were constructed by starting with the GFS data as the first-guess for an 
analysis using observations.  Most observations were obtained from the Meteorological 
Assimilation Data Ingest System (MADIS) (2014) except that the Tropospheric Airborne 
Meteorological Data Reporting (TAMDAR) observations were obtained from AirDat (2014).  
The MADIS observations included standard surface observations, mesonet surface 
observations, maritime surface observations, wind profiler measurements, rawinsonde 
soundings and ACARS aircraft data.  Use and reject lists obtained from developers of the 
Real-Time Mesoscale Analysis (2014) system and were used to filter MADIS mesonet 
observations; this is especially important given the greater tendency of mesonet observations 
to be poorly sited than other, more standard, surface observations. The WRF component 
Obsgrid was used to quality control all observations; this included gross error checks, 
comparing observations to a background field (here GFS), and comparing observations to 
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nearby observations.  Obsgrid was modified to allow single-level observations, like the 
TAMDAR and ACARS aircraft data used here, to be more effectively compared against the 
background field (GFS).  Observation nudging is applied using observations from these same 
sources from 1200 to 1800 UTC, followed by one-hour ramping down of the nudging from 
1800 to 1900 UTC during which time no new observations are assimilated; consequently, 
1800 UTC begins the forecast period since no observations after this time are assimilated.  

For the physical parameterizations of the WRE–N , a modified version of the Mellor–
Yamada–Janjić (MYJ) Planetary Boundary Layer (PBL) (Janjić 1994) scheme was used.  
This modification decreases the background turbulent kinetic energy (TKE) and alters the 
diagnosis of PBL depth used for model output and data assimilation.  The WRF single-
moment, 5-class microphysics parameterization is used on all domains (Hong et al. 2004), 
while the Kain-Fritsch (Kain 2004) cumulus parameterization is used only on the 9-km 
domain.  For radiation, the RRTM (Mlawer et al. 1997) is used for longwave and Dudhia 
(Dudhia 1989) scheme for shortwave.  The Noah land surface model is used (Chen and 
Dudhia 2001a, 2001b).  Additional references and other details for these parameterization 
schemes are available from Skamarock (2008). 

The case study days were selected on the basis of the prevailing synoptic weather conditions 
over the nested domains, and a short description of these conditions is provided in Table 1. 

Table 1:  Synoptic conditions for the case study days considered 

Case Dates (all 2012) Description 

1 February 07–08 Upper level trough moved onshore which led to widespread 
precipitation in the region. 

2 February 09–10 Quiescent weather was in place with a 500-hPa ridge centered 
over central California at 12 UTC. 

3 February 16–17 An upper level low is near the California/Arizona border with 
Mexico at 12 UTC, bringing precipitation to that portion of the 
domain.  This pattern moved south and east over the course of 
the day. 

4 March 01–02 A weak shortwave trough results in precipitation in northern 
California at the beginning of the period that spreads to 
Nevada, and then moves southward and decreases in coverage. 

5 March 05–06 Widespread high-level cloudiness due to weak upper level low 
pressure but very limited precipitation. 
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After model execution and generation of the Point-Stat matched pair output, with duplicate 
handling set to SINGLE so that we only report a single matched pair per hour for each 
observation station, we conducted a quality control analysis of the forecast and observation 
data, focusing our attention on surface observations (2 meter above ground level (AGL) 
temperature and moisture, and 10 meter AGL wind).  We did not consider several 
observation stations reporting from different mesonets with a common site id.  These sites 
reported with different latitude and longitude and/or elevations depending on the particular 
mesonet the data came from, and these differences resulted in reports being in some cases a 
kilometer or more apart.  However, this reduction in number of stations was not an 
appreciable loss in observational data.  Once we completed our quality control, we further 
restricted our attention to only those stations that reported observations in each of the 25 
hours of a given case day (1200 UTC from the beginning to 1200 UTC at the end).  Our 
intent in making this restriction was twofold: 1) we could make hour to hour comparisons 
using the same base set of data, and 2) any remaining stations within a given hour would 
serve as means to cross-validate our analysis.  The number of stations considered for each 
case day is given as Table 2.  Note that here we only describe statistics from the 2-m AGL 
temperature and moisture and not on the 10-m AGL wind statistics. 

Table 2:  Count of stations that were used in each case study by case and altitude above ground level (AGL); 
for two meters, these were stations reporting the Temperature and moisture data, and for 10 meters, these 

were stations reporting wind. 

 Altitude (AGL) 

Case 2 meters 10 meters 

1  135  72 

2  96  48 

3  122  58 

4  133  80 

5  69  47 

 

3. Results 

We used ESRI’s ArcGIS for Desktop (ESRI 2014) to geo-locate the Point-Stat matched pair 
data consisting of observing station location, elevation, value of observed meteorological 
variable and the value of the forecast variable interpolated to the station location within the 
1/3 arcsec resolution digital elevation model (DEM) framework (U.S. Geological Survey 
2013).  We depict the geo-located stations we used in our analysis of case day 1 in Figure 2. 
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In our analysis of the first case day, we studied the five specific hours given in Table 1.  We 
chose these specific times to examine the impact of the data assimilation and subsequently 
the forecasts.  In the analysis that follows, we look at the forecasts for February 7-8, 2012 
specifically for the 0600 and 1200 UTC times that roughly corresponding to early stable 
planetary boundary layer formation and late stable boundary layer conditions. 

We computed bias errors for all observation stations, defined as the forecast value minus the 
observed value, for each meteorological variable (temperature, relative humidity, and dew 
point) at the Z2 surface level corresponding to two meters AGL.  Note that the model 2-m 
diagnostic temperature and moisture values were used as the forecast values. Over the 
domain, our analysis showed that we could treat these bias errors as Gaussian.  Consequently 
we treated each bias error as a sample point from a random field, and employed the 
“Empirical Bayesian Kriging” (EBK) (Krivoruchko 2011, 2012) feature of ArcGis to 
estimate a continuous surface for the point forecast error data.   Note that these surfaces will 
not extend to the western or southern extents of the domain because there is insufficient data 
in these areas to produce a statistically significant surface estimate. 

Inspection of these error surfaces for the dew point and relative humidity variables showed 
that the distribution of these errors were in reasonable spatial agreement with one another at 
2 meters AGL; therefore, we focused our attention on the two directly measured variables 
temperature and relative humidity instead of the derived variable dew point.   

 
Figure 2:  Geo-located observations stations reporting temperature data used in case day 1 analysis for the 

inner, 1 km grid spacing, nest (Domain 3).  Each station is indicated by a single triangle. 

To gauge model performance, we employed MET to compute the matched pair statistics over 
the inner, one kilometer grid spacing, domain (domain 3).  The domain aggregate statistics 
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are presented as Table 4.  These statistics indicate that at the domain level, the model 
performed well over the forecast period with unremarkable errors.  

Table 3:  Analysis times and rationale for choice 

 Time (hr)  

Period UTC Forecast 
Lead 

Local 
(PST) Reason 

Assimilation 
1200 0 0400 Beginning of data assimilation 
1800 6 1000 End of data assimilation 

Forecast 
0000 12 1600 Late afternoon, unstable PBL 
0600 18 2200 Early evening, slightly stable PBL 
1200 24 0400 Early morning, stable PBL 

 

Our next step was to employ EBK to estimate surfaces of the forecast error for the two 
forecasted variables: temperature (Figure 3) and relative humidity (Figure 4).  Our intent with 
this analysis was to explore the model bias errors spatially to identify potential geographic 
variables such as elevation, distance from the coast, and slope that would allow us to more 
thoroughly explore these errors. 

Table 4: Mean errors of the bias (forecast - observed) errors for each of the five case days, and at each of the 
three meteorological variables present at the Z2 surface level (two meters AGL) at 4 PM PST (0000 UTC) 

and 4 AM PST (1200 UTC) for next day in the case. 

Case UTC Temperature 
(K) 

Dew Point 
(K) 

Relative 
Humidity (%) 

1 
0000 −0.17 1.11 5.83 
1200 0.76 1.40 2.39 

2 
0000 −2.89 2.95 12.27 
1200 2.42 −1.35 −13.76 

3 
0000 −0.65 0.09 1.94 
1200 0.81 −2.18 −11.31 

4 
0000 0.30 0.23 0.14 
1200 1.58 −2.18 −18.66 

5 
0000 −3.55 3.48 17.34 
1200 −0.13 −0.59 −1.57 
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Figure 3:  (a) Upper left image is a contour plot of the estimated surface for the temperature error bias at 
0000 UTC (4 PM PST, 07 February 2012).  Each line of the contour is a quintile of the error surface.  The 
surface tends from a 0.23K upper quintile along the coast, to a -1.47K lower quintile over the mountains east 
of San Diego.  (b) Lower left scatter plot of the temperature error bias versus elevation, showing some 
significant outliers, with a least square regression estimated second order polynomial, but with only a very 
small quadratic component; however, the Pearson correlation coefficient is not statistically significant 
possibly because the boundary layer is unstable.  (c) Upper right image is a contour plot of the estimated 
surface for the temperature error bias at 1200 UTC (4 AM PST, 08 February 2012).  Each line of the contour 
is a quintile of the error surface.  The surface tends from a 1.23K upper quintile along the coast, to a -0.72K 
lower quintile over the mountains east of San Diego.  (d) Lower right scatter plot of the temperature error 
bias versus elevation with a least square regression estimated first order polynomial.  For this polynomial, the 
Pearson correlation coefficient is statistically significant at 0.46 possibly because the planetary boundary 
layer is more stable. 

We generally observed that the tendency to over or under forecast both temperature and 
relative humidity seemed to be related to the elevation of the observation station.  To 
investigate this, we partitioned the data into two parts via a threshold value that ranged from 
200 to 1000 meters above sea level in elevation.  We used this simple method to explore 
Pearson’s correlation coefficient for the temperature versus elevation data that lay above and 
below this threshold, with a goal of finding a partition elevation of the surface temperature 
data that would maximize the correlation coefficient on both sides of the threshold; however, 
this analysis was inconclusive.  For the 4 PM PST time (0000 UTC), when the threshold was 
400 meters or above, we observed statistically significant (at an alpha of 0.10) weak to 
moderate correlations (-0.17 to -0.43) for all temperature versus elevation comparisons below 
the 400, 500, …, 1000 meters above sea level thresholds; however, the comparisons above 
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that same threshold were mixed significant and non- significant correlations with no obvious 
trend.  For the 4 AM PST time (1200 UTC), at every threshold value we had statistically 
significant correlation coefficients for moderate correlations (-0.27 to -0.64) both above and 
below the threshold.    

 

  

Figure 4:  (a) Upper left image is a contour plot of the estimated surface for the relative humidity error bias 
at 0000 UTC (4 PM PST, 07 February 2012).  Each line of the contour is a quintile of the error surface.  The 
surface tends from a 13.14% upper quintile to the north and along the mountains east, of San Diego to a 
5.14% lower quintile along the mountain slopes east of San Diego.  (b) Lower left scatter plot of the 
temperature error bias versus elevation, showing some significant outliers, with a least square regression 
estimated second order polynomial, but with only a very small quadratic component; however, the Pearson 
correlation coefficient is not statistically significant possibly because the boundary layer is unstable.  (c) 
Upper right image is a contour plot of the estimated surface for the relative humidity error bias at 1200 UTC 
(4 AM PST, 08 February 2012).  Each line of the contour is a quintile of the error surface.  The surface tends 
from an 8.62% upper quintile to the north, and along the mountains east, of San Diego to a -10.41% lower 
quintile scattered over the coastal areas and the south end of the mountains.  (d) Lower right scatter plot of 
the temperature error bias versus elevation, showing some significant outliers and a least square regression 
estimated first order polynomial.  For this polynomial, the Pearson correlation coefficient is statistically 
significant possibly because of a more stable planetary boundary layer. 
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4. Conclusions  

At this stage, the results demonstrate that we have developed a method to analyze spatially 
distributed point forecast errors using a GIS. Using the tools of the GIS, the errors can be 
analyzed to show the possible dependence on terrain characteristics at the spatial scales of 
phenomena of interest to Army warfighters such as mountain/valley breezes and land/sea 
breezes which are themselves tied to the local terrain variables. The employment of statistical 
analysis and the results obtained from this work show considerable promise toward the goal 
of demonstrating the relationships and dependencies of high resolution forecast errors to 
terrain characteristics in sub-domains where the statistics are more homogeneous.  Although, 
the analysis results show interesting spatial trends in the errors, further analysis will be 
needed to draw firm conclusions about the performance of the WRE–N/FDDA. Our goal, 
which was to develop a method to go beyond the types of conclusions gained from domain-
level, aggregate statistics was achieved.  
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