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1. INTRODUCTION 

The study of submeso motions (i.e., 
fluctuations with periods of minutes to tens of 
minutes and horizontal scales of ~0.02 to 2.0 km) 
using numerical weather prediction (NWP) is 
difficult because the current mesoscale models 
have limited skill forecasting the timing and 
frequency of these events; and we  lack a 
systematic verification method for these transient, 
nonstationary motions.  Traditional verification 
methods assess dynamical systems based on 
features extracted from the frequency or the time 
domain, providing only some perspective of the 
validity of the model.  As a result, classical time-
dependent, frequency-independent verification 
strategies, such as the root mean squared error or 
mean absolute error, can underestimate the 
predictability of the model due to phase errors. 
Time-independent, frequency-dependent 
strategies such as Fourier analysis can 
overestimate the predictability of the model due to 
the inaccurate representation of nonstationary, 
transient features. So in general, feature-based 
validation techniques may be ineffective for cases 
characterized by submeso activity.   

The wavelet transform bypasses many of 
these limitations allowing the evaluation of time 
series in the time-frequency domain and 
facilitating the detection of dominant modes and 
events of short duration (Terradellas et al. 2001).  
The wavelet transform has been used for the 
verification of dynamical systems through the 
evaluation of cross-correlation and cross-
coherence (e.g., Jiang and Mahadevan 2011).  
Model verification using these methods, however, 
is conducted using the wavelet coefficients in the 
time-frequency domain, which is complicated by 
significance testing, correlation of neighboring time 
and scales in the wavelet domain, spurious 

coherence regions, and the lack of a general 
verification metric.   

Many of these issues can be avoided by using 
the wavelet transform as a bandpass filter of 
uniform shape and varying location.  This property 
of the wavelet transform allows it to be used for 
data filtering or denoising and permits the analysis 
of frequency-dependent (i.e., scale-dependent) 
signals in the time domain.  In this study, this 
property of the wavelet transform is explored in the 
development of a new verification methodology for 
nondeterministic modes.  This new technique is 
then implemented for the verification of the 
Weather Research and Forecasting model (WRF; 
Skamarock et al. 2008) forecasts for real cases 
characterized by submeso motions.  

2. THE ROCK SPRINGS NETWORK AND 
OBSERVATIONS  

A special observing network, deployed at 
Rock Springs, Pennsylvania (PA), is used to 
investigate gravity waves over the complex terrain 
of central PA (Fig 1).  The Rock Springs network is 
located within the Nittany Valley, 20 km southeast 
of the Allegheny Mts. and adjacent to Tussey 
Ridge (Fig 1a).  The network consists of two 
SODARs, founded by the Army Research Office 
(ARO) Defense University Research 
Instrumentation Program (DURIP), as well as fast 
response two- and three-dimensional sonic 
anemometers and thermistor temperature sensors 
mounted on 2-, 10- and 50-m towers.  These 
instruments are designed primarily for sampling 
downslope drainage winds and sub-mesoscale 
motions in the cold pools.  The locations of the 
towers and SODARs are shown in Fig 1b. 

Six cases, characterized by submeso activity 
and gravity waves, are investigated.  The suite of 
cases is observed during the 2011 summer-fall 
seasons.  

3. MODEL CONFIGURATION AND 
EXPERIMENTS  

In this study, the WRF version 3.3 is 
configured like that in Seaman et al. (2012).  It 
includes four, one-way-nested domains with 12-, 
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4-, 1.33-, and 0.444-km horizontal grid spacing, 
respectively. Initial and boundary conditions are 
provided by the NCEP Global Forecast System 
(GFS) 0.5°x0.5° data every 6 h.  The model 
physics include the Noah land surface model 
coupled with the Moderate-resolution Imaging 
Spectroradiometer (MODIS) land use/land cover, 
the Rapid Radiative Transfer Model long-wave 
and Dudhia short-wave radiation schemes, and 
the Kain-Fritsch cumulus parameterization (12-km 
domain only).Model verification skill is first 
assessed for three initialization strategies using 
the Mellor-Yamada-Janjic (MYJ; Janjic 1990, 
1996, 2002) planetary boundary layer (PBL) 
scheme for six case studies.  The initialization 
experiments include a 12-h free forecast initialized 
at 0000 UTC (CTRL), a 24-h forecast initialized 12 
h prior to the 0000 UTC verification start time 
(BSL), and a 12-h forecast preceded by a 12-h 
four dimensional data assimilation period (FDDA).  
The FDDA pre-forecast includes analysis nudging 
to GFS analysis data and observation nudging to 
WMO data and Rock Springs observations.  In 
addition, the verification skill is assessed for four 
PBL schemes using three case studies with FDDA 
initialization.  This includes the 1) modified MYJ 
scheme, 2) Yonsei University scheme (YSU; Hong 
et al. 2006), 3) the Quasi-normal Scale Elimination 
scheme (QNSE; Sukoriansky et al. 2005), and 4) 
the Mellor-Yamada-Nakanishi-Niino scheme 
(MYNN; Nakanishi and Niino 2004). 

4. VERIFICATION METHODOLOGTY 

 The wavelet transform is employed in the 
development and implementation of a new 
verification strategy for nondeterministic modes. 
Deterministic and nondeterministic modes are 
assessed following the Gaudet et al. (2008) 
spectral decomposition analysis, in which 
fluctuations with periods less than 2 h are 
considered stochastic and nondeterministic. The 
deterministic verification is conducted for 2-h 
filtered data using standard mean absolute error 
(MAE) and mean error (ME).  The 
nondeterministic verification procedure is as 
follows: 

1. Decompose the signal into its wavelet 
coefficients using the continuous wavelet 
transform (CWT), given by 

 

(1) 

where s is the scale, n is the translation 

parameter, δt is the timestep, and  ψ*  is the 
complex conjugate of a scaled and translated 
Morlet wavelet, given by 

 
(2) 

where ω0 is the base frequency. 

2. Reconstruct the time-amplitude series  at 
each Morlet scale independently using 

 

(3) 

where Cδ and δj are wavelet-specific factors 
(0.4875 and 0.776 for the Morlet wavelet), and 
j is a scale index.  (Eq. 3 is a bandpass filter of 
uniform shape and varying location and width 
with a known response function given by the 
sum of its scales). 
 

3. Detect positive oscillations with amplitudes 
greater than the instrument precision (e.g., 
0.01 K for the thermistors and 0.01 m s-1 for 
the sonic anemometers) for all the frequency-
dependent time series. 
 

4. Bin the retrieved amplitudes to create 
observed and forecasted distributions of the 
fluctuations 

  

5. Compute Statistics, fractional relative error 
(FRE) and mean relative error (MRE), using 
the frequency-dependent amplitude 
distributions. The FRE is given by 

 

 

(4) 

where A refers to the amplitude bin, s refers to 
the scale, and NF and NO represent the 
number of forecasted and observed 
fluctuations, respectively. The FRE is selected 
over the relative error in order to avoid dividing 
by zero for scales where no oscillations are 
observed within a particular amplitude bin.  
The MRE is given by 

 

(5) 

   
and it is used to summarize information over 
multiple sites (N) and/or cases (C).  The MRE 
can be either positive or negative.  Large 
magnitudes of MRE imply that the model 
predictions are not able to capture the 



variability of the observed time series at the 
correct frequency (scale) and/or with the 
correct amplitude.  Positive (negative) MRE 
values indicate the over-prediction (under-
prediction) of the number of fluctuations with 
amplitudes and scales equal to those 
observed.   

The sum of mean absolute relative error 
(SMARE) over all sites and cases is computed 
for each set of experiments.  The SMARE is 
defined as 

 

(6) 

and it is a measurement of the total error.  The 
uncertainty of the SMARE is estimated using 
the standard error, σ, of the FRE 

  

 
(7) 

 

5.  RESULTS FOR DETERMINISTIC 
STATISTICAL ANALSYSIS 

Figure 2 shows time series and 10-h means of 
deterministic, 2-m temperature and wind speed 
MAEs for the initialization strategies experiments 
and PBL parameterization experiments.  FDDA 
has some advantages over CTRL and BSL for 
temperature predictions (Fig 2a).  FDDA reduces 
the 10-h mean MAE by 0.6 and 0.8 K compared to 
CTRL and BSL respectively, and produces better 
initial conditions at 0000 UTC. There is little 
sensitivity to initialization strategy for wind speed 
predictions (Fig 2b), and wind errors are less than 
1.2 m s-1. 

 For PBL parameterization experiments, MYJ, 
MYNN, and YSU produce very similar temperature 
MAEs over the evaluation period while QNSE 
produces large errors due to a cold bias (Fig 2c). 
The QNSE produces forecasts that are 
consistently 2-3 K too low (not shown).  There is 
little sensitivity of wind speed predictions to choice 
of PBL physics(Fig 2d).  However, the 
deterministic, wind-speed MAEs for all cases are 
already small (<1.0 m s-1).  

6.  RESULTS FOR NONDETERMINISTIC 
STATISTICAL ANALSYSIS 

Nondeterministic, temperature MREs for all 
the initialization experiments are presented in Fig 
3. For these cases, the model underestimates 

small amplitude fluctuations with periods less than 
6 min by nearly 100 %.  This result is expected 
since the model is designed to filter small-
amplitude, high-frequency fluctuations.  The WRF 
model, however, overestimates the number of 
small amplitude fluctuations with periods greater 
than 22 min at the expense of producing 
fluctuations of larger amplitudes.  This result 
indicates that WRF produces forecasts that are 
too smooth even for longerperiod fluctuations (in 
the submeso and meso-gamma range), where 
better model skill is expected.  Similar results are 
obtained for wind speed MREs and for all PBL 
physics experiments.    

The SMAREs for the initialization experiments 
are presented for all amplitude bins (Fig. 4a, c) to 
illustrate the total error of the forecasts and for 
amplitudes greater than 0.1 (Fig. 4b, d) to illustrate 
the effect of small amplitude fluctuations on 
forecast skills. For temperature and wind speed 
forecasts, much of the variability among 
experiments for small scales (Fourier periods) are 
related to fluctuations with amplitudes less than 
0.1 K (compare Fig 4 a and b).  FDDA appears to 
show some advantage forecasting the 
temperature and wind speed variability for periods 
greater than 22 and 43 min respectively over 
CTRL (Fig 4 b, d). 

For PBL parameterization experiments, 
temperature and wind speed SMAREs are 
presented in Fig 5.  These experiments also 
exhibit large variability at high-frequency scales 
that are associated with small amplitude 
fluctuations.  QNSE better captures the variability 
of nondeterministic temperature modes with 
periods > 22 min versus other parameterizations.   
TKE-based schemes (MYJ, MYNN and QNSE) 
have some advantage over YSU for 
nondeterministic temperature modes. The limited 
sensitivity of deterministic and nondeterministic 
wind speed to PBL option suggests that the 
parameterizations may be very similar and not a 
large contributing factor to the predicted wind 
speed variability. 

7. CONCLUSION  

The new non-deterministic scale evaluation 
permits the verification of the submeso variability 
independent of time and phase error but 
accounting for the scale and amplitude of the 
fluctuations.   Following expectation, the model 
completely misses small-period, small-amplitude 
fluctuations by almost 100 %.  However, the model 
also underestimates the amplitude of fluctuations 
with periods of submeso and meso-gamma 



scales, where the model could better resolve 
these features.  Nevertheless, the model error at 
these larger scales is small.  

For initialization experiments, the FDDA 
improves the deterministic temperature errors and 
biases from GFS initialized experiments, while 
resolving some of the observed variability of 
nondeterministic predictions.  For PBL 
parameterization experiments, MYJ forecasts 
temperature and wind fluctuations with wavelength 
and amplitude closer to observed than YSU and 
MYNN, and without the large temperature bias of 
the QNSE scheme. 

Further testing of this technique over a larger 
range of cases, should be implemented in order to 
understand the source of the amplitude biases 
over all scales.  This study illustrates the need for 
a combined, deterministic and non-deterministic 
verification strategy for the study of the SBL.   
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a) b) 

Figure 1.  High-resolution (90-m) terrain elevation (m MSL, colored according to scale) for (a) a 40 km by 40 
km region containing the Rock Springs network  (R) and major topographical features and (b) a 5 km by 5 km 
region denoted by the black square in a) showing the distribution of instrumented towers and SODARs.  X 
and O represent the locations of SODAR 2028 and 2027 respectively before (blue) and after (magenta) 29 
September 2011, respectively. 

a) b) 

c) d) 

Figure 2. Six-cases MAE of 2-h filtered temperature and wind speed for initialization strategy experiments (a and 
b) and three-cases MAE of 2-h filtered temperature and wind speed for PBL parameterization experiments (c and 
d). 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Six-case, temperature MREs for CTRL, BSL and FDDA presented as a function of the equivalent 
Fourier period (min) and amplitude bin (every 0.1 K; shaded according to scale).  Stacked bars represent 
the total contribution of each amplitude bin error at each period to the total MRE.  Negative values indicate 
the underestimation of the observed variability, while positive values indicate the overestimation of the 
observed variability. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Six-cases, temperature (a and b) and wind speed (c and d) SMARE over all amplitudes (a and c) 
and 0.1-0.9 K and 0.1-0.9 m s-1 temperature and wind speed amplitude range, respectively, (b and d) for 
initialization-strategy experiments. 

a) b) 

c) d) 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

a) b) 

c) d) 

Figure 5. Three-cases, temperature (a and b) and wind speed (c and d) SMARE over all amplitudes (a 
and c) and 0.1-0.9 K and 0.1-0.9 m s-1 temperature and wind speed amplitude range, respectively, (b 
and d) for PBL-parameterization experiments. 


