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1. INTRODUCTION 

 
Mountain wave activity within the stable bound-

ary layer (SBL) has a large impact on circulations that di-
rectly influence the outcome of atmospheric transport and 
dispersion (AT&D) in the event of a release. Mesoscale 
terrain-induced mountain wave activity is highly sensitive 
to changes in background winds or static stability. Vary-
ing initial conditions and parameterizations of surface 
layer and planetary boundary layer (PBL) physics within 
weather models leads to unique patterns in modeled 
mountain wave activity and thus uncertainty in AT&D pre-
dictions. A twelve member sub-km-grid ensemble for 
evaluating this AT&D uncertainty within the SBL over 
complex terrain is described. Ensemble spread is 
achieved through diversity in initial conditions and 
PBL/surface layer physics within the Weather Research 
and Forecasting (WRF) model (Skamarock et al. 2008). 
Ensemble member output is used as input to the Lagran-
gian transport and diffusion Second Order Closure Inte-
grated Puff (SCIPUFF) model for hazard prediction 
(Sykes et al. 2006). In addition, the use of the ensemble 
mean or a single best member (the member whose vec-
tor wind difference against the ensemble mean or obser-
vations is smallest) capable of utilizing ensemble wind 
field uncertainty statistics (SCIPUFF hazard mode) is ex-
plored as a less computationally costly approach to quan-
tify AT&D uncertainty. 
  

Ensemble performance is evaluated for a case 
study using probabilistic verification techniques including 
the Continuous Ranked Probability Score (CRPS) and 
rank histograms (Wilks 2011). Performance statistics are 
calculated using observations from the Rock Springs, PA 
network along Tussey Ridge within the Nittany Valley of 
central Pennsylvania (Hoover et al. 2014). Evaluation re-
sults from ensemble configurations using 1.333-km hori-
zontal grid spacing (referred to as the 1.3-km ensemble) 
and 0.444-km horizontal grid spacing (referred to as the 
0.4-km ensemble) are compared. Confidence intervals 
are determined using a bootstrap technique in order to 
test for significant differences in performance between 
the two ensemble configurations (Efron 1979; DiCiccio 
and Efron 1996; Candille et al. 2007).  

 
Two additional experiments are conducted to 

examine ensemble performance for multi-initialization 
versus multi-physics ensemble configurations. CRPS val-
ues of four three-member multi-initialization ensembles 
holding PBL/surface layer physics constant are com-
pared and, the same type of comparison in performed for 
three four-member multi-physics ensembles holding  
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initial conditions constant.   
 
2. MODEL DESCRIPTION AND ENSEMBLE CONFIG-
URATION 

 
The advanced research WRF (WRF-ARW; Ska-

marock et al. 2008) version 3.6 is configured with four 
one-way nested domains with 12-km, 4-km, 1.333-km, 
and 0.444-km horizontal grid spacing. Because the SBL 
is often only a few tens of meters deep, fine vertical res-
olution is necessary to better resolve low-level nocturnal 
wind speeds and valley cold pool development (Seaman 
et al. 2012). Thus, each nest includes 44 vertical levels 
with 10 levels in the lowest 50 m and 2-m spacing in the 
lowest 10 m. Initial and lateral boundary conditions are 
provided every 6 h by NCEP 0.5˚x0.5˚ Global Forecast 
System (GFS) analyses and forecasts. The Rapid Radi-
ative Transfer Model (RRTM; Mlawer et al. 1997) 
longwave and Dudhia shortwave (Dudhia 1989) atmos-
pheric radiation physics parameterizations are used. The 
Kain-Fritsch cumulus parameterization (12-km domain 
only; Kain 2004), 3-class simple ice microphysics (Hong 
et al. 2004), and Noah land surface model (Chen and 
Dudhia 2001) with MODIS land use are also employed 
(Friedl et al. 2002).  
  

Ensemble diversity is created by using different 
initial conditions and PBL physics schemes with corre-
sponding surface layer physics schemes. Initial condition 
diversity is given by Control (CTRL), a 12-h cold-start 
forecast, Baseline (BSL), a 24-h cold-start forecast initial-
ized 12 h prior to the forecast period of interest, and Four 
Dimensional Data Assimilation (FDDA), a 12-h forecast 
based on a 12-h pre-forecast which utilizes analysis and 
observation nudging (e.g., Rogers et al. 2013; Lei et al. 
2012). PBL/surface layer scheme diversity includes the 
Mellor-Yamada-Janjic (MYJ) with Eta surface layer (Jan-
jic 1994), the Mellor-Yamada Nakanishi Niino (MYNN; 
Nakanishi and Niino 2004) with Eta surface layer, the 
Quasi-Normal Scale Elimination (QNSE; Sukoriansky et 
al. 2005) with QNSE surface layer, and the Yonsei Uni-
versity (YSU; Hong et al. 2006) with revised MM5 surface 
layer (Jimenez et al. 2012). Each PBL scheme employs 
different treatments of turbulence closure and PBL mix-
ing. Table 1 presents the pairings of initial conditions and 
PBL/surface layer physics providing a total of 12 ensem-
ble members.   

 
3. NITTANY VALLEY AND ROCK SPRINGS OBSER-
VATION NETWORK 

 
The 0.4-km nested domain is centered over Nit-

tany Valley in central PA. The valley is approximately 20 
km wide and is bordered by the Allegheny Mts. (~350 m 
AGL) to the northwest and Tussey Ridge (~300 m AGL) 
to the southeast (Fig. 1a). A special observing network 



located in Rock Springs, PA is situated along Tussey 
Ridge (Fig. 1b). The 2-m temperature and wind observa-
tions from sites 3, 6, 7, 8, 9, and 12 are utilized for en-
semble performance evaluation. In addition to thermis-
tors and 2-D or 3-D sonic anemometers at the sites, a 
sonic detection and ranging instrument (SODAR) is lo-
cated within the network near the base of Tussey Ridge.  
 
4. CASE STUDY: 16 SEPTEMBER 2011 

 
A case study is performed for the night of 16 

September 2011 from 0000-1200 UTC (SEP16). SEP16 
is characterized by weakening pressure gradients and 
low-level wind speeds as an area of high pressure moved 
in from the west.  Skies were clear with northwesterly sur-
face wind (perpendicular to the Allegheny Mts.) over 
western NY and central PA. Trapped-lee waves excited 
by the Allegheny Mts. due to wind ducting regions per-
sisted throughout the night. SODAR 2027 observations 
from 0600-0800 UTC demonstrate northwesterly to 
southeasterly reversal flow from ~160 m to ~30 m AGL 
and minimum wind speed values between the regions of 
reversed flow (Fig. 2). This flow pattern indicates the 
presence of a rotor circulation with reversal flow below 
100 m and perpendicular to Tussey Ridge into Nittany 
Valley.  

 
The SEP16 case study focuses on a simulated 

release from Site 9 in the Rock Springs network from 
0600-0800 UTC to demonstrate the broad range of AT&D 
outcomes exhibited by explicit ensemble members during 
this time frame. SCIPUFF surface dosage plumes for a 
Site 9, 3-m, 12-min continuous release from 0600-0800 
UTC of the passive tracer C7F14 for each explicit member 
are plotted in Fig. 3. In most members, the dosage 
plumes move southeast across Tussey Ridge; however 
the dosage plumes of several members deviate against 
the mean flow from the northwest and track along and 
into Nittany Valley. Corresponding vertical trajectory 
cross sections are plotted in Fig. 4 for a 3-m AGL release 
from nine grid cells (a 3x3 cell region surrounding Site 9). 
The cross section location is depicted by the dashed line 
in Fig. 1a. In several members, it is clear that some of the 
particle trajectories are influenced by a circulation along 
Tussey Ridge and within Nittany Valley (e.g., QNSE-
CTRL). Surface dosage values and the spatial extent of 
the surface dosage plumes are closely related to the var-
iations in transport associated with the rotor-like circula-
tion resolved by the model. From a hazard prediction 
standpoint, wind reversal regions and along valley flow 
associated with rotor circulations are both very important 
for surface dosage prediction. Predicting the correct loca-
tion and timing of these rotor motions is especially diffi-
cult. Therefore, a 12-member ensemble appears capable 
of providing reasonable spread (among AT&D outcomes) 
important for quantifying forecast uncertainty for a chem-
bio release.  

 
Explicit ensemble AT&D surface dosage proba-

bilities (an aggregate of dispersion results from the ex-
plicit members) are compared to those derived from a sin-
gle-member approach (ensemble mean or best member) 

that is capable of utilizing ensemble-based wind field un-
certainty in SCIPUFF hazard mode. Hazard mode em-
ploys the ensemble-based wind field uncertainty, single-
point U wind variance, V wind variance, and UV wind co-
variance to compute plume dispersion. Figure 5a depicts 
explicit ensemble surface dosage probability for a thresh-
old value of 10-9 m3

-sm-3 following a Site 9 release inte-
grated from 0600-0800 UTC. Figure 5b depicts the corre-
sponding probabilities derived from a clipped-normal dis-
tribution for the ensemble mean. It is noted that the sin-
gle-member approach missed the western extent of the 
5% probability contour in Fig. 5a. Only one member, the 
YSU-FDDA, had spatial plume extent in the western half 
of the domain. The single-member surface dosage prob-
abilities do not exactly match those of the explicit ensem-
ble, although the single-member hazard-mode approach 
gives a clear indication of the overall range of potential 
outcomes and the spatial area most likely to be impacted 
by a chem-bio release at a much reduced cost. Although 
the explicit ensemble probabilities provide greater detail, 
the computationally efficient single-member approach 
could prove valuable in a time sensitive situation. 
 
5. ENSEMBLE PERFORMANCE AND EVALUATION 
TECHNIQUES 
 

Ensemble performance is evaluated using 
probabilistic verification techniques including the rank 
histogram and the Continuous Ranked Probability Score 
(CRPS; Wilks 2011). A bootstrap technique is employed 
to test for significant differences between two ensemble 
configurations (Efron 1979; DiCiccio and Efron 1996; 
Candille et al. 2007).  
 
5.1 RANK HISTOGRAMS 

 
Rank histograms are used to quantify the relia-

bility and spread of an ensemble prediction system. A re-
liable ensemble forecast probability is equal to the true 
probability of the event. If an ensemble forecast is relia-
ble, the observation should be equally likely to fall in any 
position within the grouped and sorted ensemble and ob-
servation values where “rank” refers to the position of the 
observation. If reliable, a uniform “rank histogram” results 
when all ranks for a forecast of a variable over some spa-
tial and temporal interval are combined. Deviations from 
rank uniformity can depict ensemble bias, underdisper-
sive, or overdispersive behavior. Visually, an ensemble 
bias appears as a slope to one side of the rank histogram. 
Underdispersive behavior occurs when the observation is 
too often an outlier compared to the ensemble forecast 
and appears as a U-shaped rank histogram. An overdis-
persive ensemble depicts larger values in the middle of a 
rank histogram. This behavior is caused by verification 
values that are infrequently extreme in comparison to the 
ensemble forecast values. Rank histograms are unable 
to quantify the ability of an ensemble to produce a specific 
forecast and should be used in conjunction with a tech-
nique that measures resolution, or sharpness, of a fore-
cast (the CRPS in this case; Hamill 2001; Wilks 2011). 
 
 



5.2 CONTINUOUS RANKED PROBABILITY SCORE  

 
The Continuous Ranked Probability Score 

(CRPS) is a probabilistic score that quantifies the differ-
ence between the ensemble forecast cumulative distribu-
tion function (CDF) and the CDF of the corresponding ob-
servations. A perfect CRPS of zero is achieved when 
every ensemble forecast value is equal to the observed 
value. As shown by Hersbach (2000), the CRPS can be 
decomposed into three components so that:  

 
𝐶𝑅𝑃𝑆 = 𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 − 𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 + 𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦  . 

 
Reliability refers to the position of the observed value 
within the ensemble of sorted forecast values; a perfect 
reliability value is zero with reliability decreasing with in-
creasing value. The value of reliability is closely related 
to the shape of a corresponding rank histogram. Resolu-
tion, often referred to as the sharpness of a forecast, re-
fers to the ability of the ensemble to produce a specific 
event forecast, and the value of uncertainty is propor-
tional to the standard deviation of the observations. The 
potential CRPS is a value that combines the resolution 
and uncertainty terms into a single term where smaller 
values are optimal. Ideally, the ensemble forecast system 
strikes an optimal balance between reliability and resolu-
tion (e.g., an ensemble with a high value of resolution but 
a large reliability value refers to a specific (or sharp) fore-
cast but for the wrong value).  
 
5.3 BOOTSTRAPPING AND CONFIDENCE INTER-
VALS 
 

 Bootstrapping is a technique used to create a 
substitute population that approximately represents the 
sampling distribution of a summary statistic of interest. 
Data is resampled with replacement and the statistic of 
interest for the new sample is then calculated. This pro-
cess is generally repeated thousands of times to create a 
distribution of sample statistics known as a bootstrap dis-
tribution (Efron 1979). Percentiles of the bootstrap distri-
bution are used to define confidence intervals that corre-
spond to those of the unknown parent population. This is 
known as the percentile method. The bias corrected and 
accelerated (BCa) correction to the percentile method ad-
justs percentiles of interest based on the bias and skew 
of the bootstrap distribution (DiCiccio and Efron 1996). 
This technique is used in the next section to calculate sig-
nificance of the differences in CRPS, reliability, and po-
tential CRPS between two ensemble configurations 
(Candille et al. 2007).   
 
 The methodology behind this approach is based 
on Candille et al. (2007). Data is resampled 10,000 times 
to create 10,000 bootstrap samples. CRPS is calculated 
for each of these new samples for two separate ensem-
bles. CRPS from ensemble B is subtracted from ensem-
ble A where a positive value indicates an improvement by 
ensemble B. A distribution of CRPS differences is cre-
ated. Confidence intervals are derived by calculating the 
2.5th and 97.5th percentile to give a 95% confidence in-
terval. If the CRPS difference and confidence intervals 

are both above zero, the result is interpreted as a statis-
tically significant improvement because only improve-
ment occurred within the confidence interval. If both con-
fidence intervals fall below zero, the result is a statistically 
significant degradation from ensemble A to B. If the con-
fidence intervals straddle zero, both improvement and 
degradation are noted within the confidence interval and 
there is no significant difference in ensemble perfor-
mance. The method is repeated for both reliability and 
potential CRPS. Because this comparison of two ensem-
bles is based on the same observation data, uncertainty 
is equal in both ensembles and any improvement in po-
tential CRPS is attributed to an improvement in resolu-
tion.  
 
6. PERFORMANCE RESULTS 
 

The 12-member configurations of the 1.3-km 
and 0.4-km ensembles are evaluated and compared. The 
low-level temperature and wind forecasts at 2 m AGL are 
evaluated over six Rock Springs sites as proxy to actual 
AT&D surface tracer measurements. U and V wind com-
ponents have been rotated to an “along-valley” compo-
nent parallel to Tussey Ridge and an “across-valley” 
component perpendicular to Tussey Ridge and parallel to 
rotor circulation reversal flow. Figure 6a depicts across-
valley wind CRPS and the corresponding reliability com-
ponent calculated every 12 min from 0000-1200 UTC for 
SEP16 for the 1.3-km ensemble. Observed, ensemble 
mean, and best member values are also plotted over the 
same time period. Large spikes in 12-min CRPS and re-
liability are apparent in Fig. 6a where ensemble values 
deviate largely from observed (e.g., ~ 0630 UTC). Addi-
tionally, ensemble values are greater than observed 
throughout the night indicating a strong positive across-
valley wind bias in the 1.3-km ensemble forecasts. Figure 
6b depicts the same information but for the 0.4-km en-
semble. Examination of Fig. 6b reveals that the magni-
tude of spikes in 12-min CRPS is reduced and reliability 
values tend closer to zero throughout the night. Ensem-
ble values produced by the sub-km grid are much closer 
to those observed indicating that the positive bias has de-
creased.  
  

Table 2 summarizes “nightly” CRPS, reliability, 
and potential CRPS values calculated over the full 
nighttime period (0000-1200 UTC) for each variable of in-
terest along with percent improvement (or skill score) 
where a positive percent improvement indicates better 
performance by the 0.4-km ensemble when compared to 
the 1.3-km ensemble. The significance of each result is 
also reported. Significant improvements in nightly CRPS 
and reliability are noted for 2-m temperature with no sig-
nificant change in resolution (potential CRPS). Nightly 
CRPS, reliability, and resolution all show significant im-
provements for both 2-m wind speed and across-valley 
wind forecasts. The significant improvement in across-
valley wind forecasts (Fig. 7) is mainly due to a large sig-
nificant improvement in reliability due to the large reduc-
tion in bias discussed previously. This result is evidenced 
in the rank histograms for the 1.3-km ensemble (Fig. 8a) 
and the 0.4-km ensemble (Fig. 8b). The large frequency 



noted in rank “1” (Fig. 8a) indicates that all across-valley 
wind ensemble forecast values were greater than ob-
served over 40% of the time. That bias is dramatically re-
duced in Fig. 8b which tends more towards rank uni-
formity indicated by the dashed line. Results for along-
valley wind show a statistically significant degradation in 
CRPS and resolution. This degradation is likely due to 
phase errors in the 0.4-km ensemble better capturing re-
versals in along-valley flow related to the rotor circulation, 
a phenomenon important to AT&D outcomes largely un-
resolved by the 1.3-km ensemble (time series not 
shown). Finer horizontal grid spacing appears necessary 
to better resolve fluctuations in surface temperature, wind 
speed, and cross-valley surface wind components re-
lated to variability associated with the rotor circulation.  

 
 Four three-member multi-initialization ensem-
bles each holding separate PBL/surface layer physics 
constant are compared. Calculating CRPS for tempera-
ture, wind speed, across-valley, and along-valley wind 
using each of the four ensemble configurations did not 
reveal advantageous performance for any one PBL/sur-
face layer physics parameterization (not shown). The 
same comparison is performed using three four-member 
multi-physics ensembles that hold the initialization strat-
egy constant. Figure 9 reveals CRPS values for multi-
physics ensembles holding CTRL, BSL, and FDDA initial 
conditions constant. The FDDA multi-physics ensemble 
demonstrates superior probabilistic forecast skill for tem-
perature, wind speed, and, most notably, across-valley 
wind (recall lower values of CRPS depict better perfor-
mance). Along-valley wind results were comparable for 
the three ensemble configurations. This result indicates 
that during the nighttime period (0000 – 1200 UTC) of 
SEP16, PBL/surface layer physics diversity benefits from 
data assimilation performed over the preceding daytime 
period. 
  
7. SUMMARY 

 
 For the SEP16 case study, a 12-member WRF 
ensemble with diversity in initial conditions and planetary 
boundary layer/surface layer physics appears capable of 
producing reasonable spread in the AT&D outcomes. A 
single-member approach using SCIPUFF hazard mode 
is shown to generally cover explicit ensemble spatial 
spread and capture the value of explicit-member dosage 
probability. In this case, positive percent improvement of 
nightly CRPS over six Rock Springs sites for 2-m temper-
ature, wind speed, and across-valley wind demonstrates 
improved performance for the 0.4-km ensemble when 
compared to the 1.3-km ensemble. The largest percent 
improvements are evident for wind speed and across-val-
ley wind. The largest improvement in across-valley wind 
nightly CRPS is due to a large bias correction that im-
proves the reliability component of the CRPS and causes 
the corresponding rank histogram to tend much closer to 
rank uniformity. Sub-km horizontal grid spacing along 
with fine vertical resolution appears necessary to better 
resolve across-valley surface wind components related to 
rotor circulations important for hazard prediction in this 
case. Additionally, the probabilistic skill of an FDDA multi-

physics ensemble configuration is superior when com-
pared to that of a 12-h cold-start forecast and that of a 
24-h cold-start forecast initialized 12 h prior to the 
nighttime period for SEP16.  
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9. TABLES & FIGURES 

 
Table 1. The 12 ensemble members given by initial con-
ditions (IC) and planetary boundary layer (PBL) / surface 
layer (SL) physics diversity. 

Member IC PBL SL 

1 CTRL MYJ Eta 

2 BSL MYJ Eta 

3 FDDA MYJ Eta 

4 CTRL MYNN Eta 

5 BSL MYNN Eta 

6 FDDA MYNN Eta 

7 CTRL QNSE QNSE 

8 BSL QNSE QNSE 

9 FDDA QNSE QNSE 

10 CTRL YSU Rev. MM5 

11 BSL YSU Rev. MM5 

12 FDDA YSU Rev. MM5 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 



 
Table 2. Summary of nightly CRPS, Reliability, and Po-
tential CRPS for 2-m temperature, wind speed, across-
valley wind, and along-valley wind for the 1.3-km ensem-
ble (1.3-km) and 0.4-km ensemble (0.4-km) along with 
percent improvement (%) of the 0.4-km ensemble over 
the 1.3-km ensemble and significance (Sig.) at the 95% 
confidence level. 

 1.3-km  0.4-km  % Sig. 

CRPS 

Temperature  0.807 0.711 11.9 Y 

Wind Speed  0.386 0.251 35.0 Y 

Across-Valley 0.752 0.398 47.1 Y 

Along-Valley 0.231 0.258 -11.7 Y 

Reliability 

Temperature  0.171 0.084 50.9 Y 

Wind Speed  0.094 0.025 73.4 Y 

Across-Valley 0.339 0.036 89.4 Y 

Along-Valley  0.006 0.009 -50.0 N 

Potential CRPS 

Temperature  0.635 0.628 1.1 N 

Wind Speed  0.293 0.226 22.9 Y 

Across Valley 0.413 0.362 12.3 Y 

Along Valley   0.225 0.248 -10.2 N 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

b) a) 

Figure 1. 90-m resolution terrain (MSL) for a) a 40 km by 40 km region containing the Rock Springs network  (R) and 
major topographical features and b) a 5 km by 5 km region denoted by the black square in a) showing the distribution 
of instrumented sites and SODARs within the observation network. O represents the location of SODAR 2027. The 
dashed line in a) corresponds to the location of the cross sections in Fig. 4.  
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.  SEP16 SODAR 2027 observed wind speed (color-filled contours) and horizontal 
wind direction (plan view wind vectors) with height (AGL) from 0500-0900 UTC. 

  

 

Figure 3. SCIPUFF surface dosages for a 3-m AGL Site 9 release of the passive tracer C7F14 

from 0600-0800 UTC for each of the ensemble members summarized in Table 1.   
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Figure 4. Vertical trajectory cross sections for a 3-m AGL, Site 9 release from 0600-0800 UTC for each of the 
ensemble members summarized in Table 1. The region of enhanced topography is Tussey Ridge. Contours 
depict potential temperature (K) as 0800 UTC. 
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Figure 5. Surface dosage probabilities for a 3-m AGL Site 9 release of the passive tracer C7F14 for a threshold value 
of 10-9 m3-sm-3 for the a) explicit ensemble and the b) ensemble mean single-member SCIPUFF hazard mode ap-
proach. 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Figure 7. SEP16 difference (1.3-km – 0.4-km ensemble) in across-valley wind 
nightly CRPS, reliability (Reli), and potential CRPS (CRPSpot) with 95% con-
fidence intervals. Results interpreted as in section 5.3. 
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Figure 6.  SEP16 0000-1200 UTC 12-min CRPS values for across-valley wind and corresponding observations along 
with ensemble mean and best member model predictions for the a) 1.3-km ensemble and the b) 0.4-km ensemble. 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

a) b) 

Figure 8.  SEP16 nightly (0000-1200 UTC) across-valley wind rank histograms for the a) 1.3-km ensemble and the 
b) 0.4-km ensemble. A dashed line indicating the frequency required for rank uniformity is plotted for reference.   
 

Figure 9. SEP16 nightly (0000-1200 UTC) CRPS for the CTRL multi-physics ensemble (blue), the 
BSL multi-physics ensemble (red), and the FDDA multi-physics ensemble (green) for 2-m 
temperature (T), wind speed (WSP), across-valley wind component (Across), and along-valley wind 
component (Along). 

 


