17th Conference on Satellite Meteorology and Oceanography

8.5

Volcanic Ash/SO2 Cloud Height Estimation from Combined Satellite Observations and Numerical Modeling Computation

Gilberto A. Vicente, NOAA, Camp Springs, MD; and E. Hughes

An efficient iterative method has been developed to estimate the vertical profile of SO2 and ash clouds from volcanic eruptions by comparing near real-time satellite observations with numerical modeling outputs. The approach uses UV based SO2 concentration and IR based ash cloud images, the volcanic ash transport model PUFF and wind speed, height and directional information to find the best match between the simulated and the observed displays. The method is computationally fast and is being implemented for operational use at the NOAA Volcanic Ash Advisory Centers (VAACs) in Washington, DC, USA, to support the Federal Aviation Administration (FAA) effort to detect, track and measure volcanic ash cloud heights for air traffic safety and management.

The presentation will show the methodology, results, statistical analysis and SO2 and Aerosol Index input products derived from the Ozone Monitoring Instrument (OMI) onboard the NASA EOS/Aura research satellite and from the Global Ozone Monitoring Experiment-2 (GOME-2) instrument in the MetOp-A. The volcanic ash products are derived from AVHRR instruments in the NOAA POES-16, 17, 18, 19 as well as MetOp-A. The presentation will also show how a VAAC volcanic ash analyst interacts with the system providing initial condition inputs such as location and time of the volcanic eruption, followed by the automatic real-time tracking of all the satellite data available, subsequent activation of the iterative approach and the data/product delivery process in numerical and graphical format for operational applications.

wrf recordingRecorded presentation

Session 8, Satellite Measuring/Monitoring of Volcanic Ash, Dust Storms, and Aerosols
Wednesday, 29 September 2010, 1:30 PM-3:00 PM, Capitol AB

Previous paper  Next paper

Browse or search entire meeting

AMS Home Page