Observations of Misovortices within a Long-lake-axis-parallel Lake-ettect Snow Band during the OWLeS Project
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Introduction and Motivation Dual-Doppler Analysis

e A vertical cross section through Vortex A (Fig. 5) reveals the transverse secondary
circulation and significant overlap between the vertical velocity (white contour) and

e Six distinct cyclonic misovortices were tracked for a 20-minute , o , , , o ,
vertical vorticity (black contour) fields, enhancing vertical vorticity via stretching.

period (Fig. 4). The vortices did not merge or interact during
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misovortices have been observed this time. e A plan view of the stretching term in the vertical vorticity equation (¢ —; Fig. 6) reveals
in  high-resolution radar data e The vortices formed and propagated along a cyclonic that stretching occurred in most of the vortices (compare Figs. 4a and 6).

ithi -lake-axis- horizontal shear zone initially at the northern edge of the band : . s 0°u : : : :
collected  within  long-lake-axis I _ | Y 5 * Rayleigh’s Instability Criterion (RIC) states that — must change sign (an inflection point
parallel (LLAP) lake-effect snow e (Figs. 4a-c), which later migrated toward the center of the 0y
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bands over Lake ONtario. Previous s smniradar multisensor band (Figs. 4d-f). ml.JSt eX|st.) for.Hsl to be presen.t (u is the mean wind compqnent parallel to the wind
analyses of single-Doppler data has iﬂr:s;ryu;l;elsll.reglon at 0500 UTC 7 e The mesoscale updraft was also along the northern edge of shift) and is satisfied at the location of the sheaazr_zone and vortices (Figs. 4a and 7).
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postulated that these vortices originate owing to horizontal the band (Fig. 5). * Fjgrtoft’s Instability Criterion (FIC) states that 972 (u — u;) < 0 for instability, where i is
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bands. One such case occurred on 7 January 2014 (Fig. 1) and Lake Untario bands ( 18- ) terminated after , the satisfied in a broad zone encompassing the shear zone and vortices (Figs. 4a and 8).
when Arctic air, characterized by 850 mb air temperatures string of vortices also vanished.
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