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Introduction Discussion and Conclusions

The cooling and stabilization of the boundary layer during
the nocturnal transition leads to a series of thermodynamic
and kinematic changes in the low-level environment. This
transition creates a challenging environment for forecasting
the evolution of supercell thunderstorms, as it is not well
understood how supercells respond to variations in their
environment. During the nocturnal transition, there are four
possible evolutions for an isolated supercell (Colman 1990;
Billings and Parker 2012; Nowotarski et al. 2012; Davenport

The strongest statistical signal was between maintained and
dissipated supercells:
RESU|tS e |ncreasing MU CIN values, combined with decreasing MU

® Mean sounding profiles and hodographs show low-level cooling and stronger low-level winds over time for all evolution types (Figs. 2-3) CAPE, and steady effective SRH likely caused the

o Unlike other evolution types, maintained cases had virtually no change in the effective layer depth through SS +5, as well as the dissipating supercells to no longer be able sufficiently lift
smallest decrease in MU CAPE (Fig. 2) parcels into the updraft

0 Mean hodographs were strongly curved, favoring right moving supercells, with clear development of the low-level jet over time ® These results indicate that a balance between MU CIN and

Maintained and merger cases contained the largest SRH, favoring stronger and longer-lived supercells (Fig. 3) effective SRH is likely needed sustain supercells through
the nocturnal transition
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The discriminatory power of effective SRH, MU CIN, and SCP
(Table 1, Figs. 5-7) led to the development of a CIN-scaled
Supercell Composite Parameter (CSCP; Equation 1). Effectively,
SCP is lowered when MU CIN is present. This hew parameter
has skill in separating the various evolution types (Figs. 8-9).

Figure 2. Mean RUC/RAP soundings at SS -1 (solid line) and SS +5
(dashed line) for each evolution classification.

Figure 3. Mean hodographs at SS -1 (blue), SS +2 (dashed red)
and SS +5 (dashed blue) for each evolution classification.

Methods

e The general synoptic setup is favorable for all supercell classifications, though a more amplified trough is evident in maintained and
merger cases (Fig. 4)

e The mesoscale inflow environment contains significant spatial heterogeneity, with notable differences evident in MU CIN and effective
SRH among all classification types (Fig. 5)

e Dissipating cases had the least favorable mean values and overall trends for supercell maintenance for the majority of parameters,
including effective SRH, effective bulk shear, and MU CIN (Table 1, Fig. 6)

Nocturnal supercell cases were identified using the Storm
Prediction Center’s Severe Thunderstorm Event Archive from
2005 to 2016. Cases were limited geographically to the Great
Plains of the United States during the months March — June.
Isolated supercells at sunset (SS) were then classified based on
their evolution from SS to SS +5 hours (Fig. 1). eean 0000 UTC 500 mb Heights
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Equation 1. SCP equation with MU CIN scaled term. The
CIN-scaled term is equal to zero when MU CIN < -25 J/kg.
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157 isolated supercells were confirmed at SS:
e Dissipated (Fig. 1a) - 86

e Maintained (Fig. 1b) - 14

e Upscale (Fig. 1c) - 45

e Merger (Fig. 1d) - 12
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around the supercell. Numerous thermodynamic (e.g., CAPE,
CIN) and kinematic (e.g., shear and SRH over a variety of
depths) parameters were derived from the model output.

e Comparing the distributions of all computed parameters among each pair of supercell classifications at each hour reveals numerous
statistically significant parameters (Table 1). The most common discriminating parameters include shear and SRH in a variety of layers,
supercell composite parameter (SCP), MU CAPE, and MU CIN.
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Figure 9. Phase space of CSCP and 0-1 km shear.
Each box represents +- one standard median
deviation from the median.



