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1.  Introduction 
Spectral formulations were derived (Xu et al. 2016, Tellus A, X16 hereafter) to compute the analysis error covariance efficiently for multistep 
and multi-scale variational data assimilation in which broadly distributed coarse-resolution observations are analyzed first and then locally 
distributed high-resolution observations are analyzed in the second step. However, the computed analysis error variance was constant and 
thus limited to represent only the spatially averaged error variance. To overcome the limitation, a suite of formulations is constructed in this 
paper to estimate the spatial variation of analysis error variance and associated spatial variation in analysis error covariance.  
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2. Spatial variation of analysis error variance 
For a single observation at x = xm in the one-dimensional 
space of x, the error variance reduction produced by 
analyzing this observation is  

 ∆σm
2(x) = γb[σbCb(x - xm)]2,        (1) 

where γb = σb
2/(σb

2 + σo
2), σb

2 (or σo
2) is the background 

(or observation) error variance, Cb(x) is the background 
error correlation function. The error variance reduction 
produced by analyzing M coarse-resolution observations, 
denoted by ∆σM

2(x), is bounded above by ∑m∆σm
2(x). The 

domain averaged value of ∑m∆σm
2(x) can be computed by     

 ∆σbs
2 ≡ ∫Ddx∑m∆σm

2(x)/D ≈ γbσb
2M∫dxCb

2(x)/D,  (2)  
where D is the domain length and the domain is extended 
periodically.  
 For M uniformly distributed coarse-resolution 
observations, ∆σM

2(x) can be estimated by 
 ∆σM

2(x) = ∑m∆σm
2(x) - ∆σbs

2 + ∆σbe
2,     (3)  

where σbe
2 ≡ σb

2 - σe
2, and σe

2 is the domain averaged 
analysis error variance estimated by the spectral 
formulation in X16.  
 For M non-uniformly distributed coarse-resolution 
observations, γb in (1) needs to be modified into   

 γm = σb
2/(σb

2 + ßmσb
2 + σo

2),        (4) 
where ßm = [Cb

2(∆xcom+) + Cb
2(∆xcom-) - 2Cb

2(∆xco)]/[1 - 
Cb

2(∆xco)], ∆xco ≡ D/M is the averaged resolution and 
∆xcom+ (or ∆xcom-) is the spacing of the mth coarse-
resolution observation from its right (or left) adjacent 
observation.  The maximum (or minimum) of ∑m∆σm

2(x), 
denoted by ∆σemx

2 (or ∆σemn
2), needs to be adjusted to 

∆σmx
2 (or ∆σmn

2) – the maximum (or minimum) of 
∆σM

2(x) computed by (3) but with ∆xco decreased to ∆xomn 

5. Conclusion 
The above constructed formulations can further improve 
the two-step variational analyses in X16, especially when 
the coarse-resolution observations become increasingly 
non-uniform and/or sparse. The formulations can be 
extended for 2D and 3D analyses. 

Fig. 1. True σa
2(x) plotted by red solid curve, and estimated σa*

2(x) 
in (5) plotted by blue dotted curve. The green dashed line shows the 
constant σe

2 estimated in X16. The purple + signs show σo
2 (= 6.25 

m2 s-2) at the locations of M (= 10) non-uniformly distributed 
coarse-resolution observations. The background error covariance 
has the double-Gaussian form as in X16 with Cb(x) = 0.6exp(-
x2/2L2) + 0.4exp(-2x2/L2)], σb

2 = 25 m2 s-2 and L = 10 km. The 
analysis domain length is D = N∆x = 110.4 km with ∆x = 0.24 km.  

Fig. 2. (a) Deviation of Ae from true A plotted by color contours 
every 1 m2 s-2 for the case of non-uniformly distributed coarse-
resolution observations in Fig. 1. Deviations of Aa, Ab and Ac 
from A are plotted by color contours every 0.5 m2 s-2 in panels 
(b), (c) and (d), respectively, where Aa, Ab and Ac are the 
successively improved estimates of A by the newly constructed 
formulations in (7)-(9).  

3. Spatial variation of analysis error covariance 
 Using σa*(x) in (6), the previously estimated analysis 

error covariance matrix Ae in X16 can be modified into 
Aa, Ab or Ac with its ijth element given by 

 Aaij ≡ σa*(xi)σa*(xj)Ca(xi - xj),         (7) 
 Abij ≡ σa*

2[(xi + xj)/2]Ca(xi - xj),       (8) 
or  Acij ≡ Aeij + {σa*

2[(xi + xj)/2] - σe
2}Cb(xi - xj),   (9) 

where Aeij ≡ σe
2Ca(xi - xj) is the ijth element of Ae. 
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(or increased to ∆xomx), where ∆xomn (or ∆xomx) is the 
minimum (or maximum) spacing between two adjacent 
observations among all non-uniformly distributed coarse-
resolution observations. This gives 

 ∆σM
2(x) = [∑m∆σm

2(x) - ∆σemn
2]ρ + ∆σmn

2,    (5) 
where ρ = [∆σmx

2 - ∆σmn
2]/[∆σemx

2 - ∆σemn
2]. The analysis 

error variance σa
2(x) is then estimated by σa

2(x) ≈ σa*
2(x) 

≡ σb
2 - ∆σM

2(x).             (6) 

4. Illustrative examples  
The improved estimates of analysis error variance and 
covariance are shown in Figs. 1 and 2, respectively. Using 
Aa, Ab or Ac to replace Ae for the two-step analysis with 
50 iterations in section 3.3 of X16, the analysis error is 
reduced from 0.150 to 0.142, 0.098 or 0.063 ms-1, while 
the single step analysis error is 0.365 ms-1. 


