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Observation of Concentric Eyewall in Edouard (2014)
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Experimental design
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SEF and ERC in simulation
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Evolution of BL wind
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* Stronger inner rainbands in NoSolarRad - more convergence outside of

primary eyewall
* Heating outside the RMW in the midtroposphere = increasing (reducing)
low-level tangential wind outside (near and inside) the RMW - outward

expansion of the RMW



Evolution of vertical velocity

z=2km
* The outer-core (outside the

radius of 150 km) upward
motion at mid-level in CNTL
became more organized, and
began to move inward
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* The latent heating released
from more convective
activities in the inner
rainbands outside of primary
eyewall in NoSolarRad
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Radiative effects on moat formation and SEF

NoSolarRad - CNTL (60 km <R <75 km)
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net radiation latent heat
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Unit: 10°K/s for (a), (b), (¢), and 10-K/s for (d)
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The net radiative heating in
CNTL is much stronger due to
the solar insolation at daytime.

Less conducive for deep moist
convection in CNTL

Less diabatic heating due to
suppressed convection in
CNTL

Difference: 0.5-1 K/day at the
top of the boundary layer



Radiative effects on moat formation
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(60 km < R < 75 km)

Heated surface air
weakens WISHE
feedback between the
surface fluxes (that
promote convection) and
the circulation.
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Front-like zone is
accompanied by distinct
positive horizontal
vorticity in the tangential
direction

n=du/oz-ow/or.

Necessary lifting is helpful
to the convection in the
upward branch of direct
thermal circulation with
positive n

Horizontal vorticity n (shaded) and equivalent potential
temperature (8., white contours) at the height of 3.5 km




Evolution of outer rainbands (front-like zone)
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* A positive feedback
between front-like zone
and active convection
contributes to the outer
rainbands enhancement
and inward movement.

== * A typical SEF with a clear
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NoSolarRad:

* Inner rainbands developed
and maintained in radius

of about 60—90 km
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Evolution of outer rainbands (front-like zone)
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greater PV in stratiform region

Potential Vorticity (PVU)
N
[=]

rainband

( b ) ——---NoSolarRad

A more convection-friendly region
Control VRS because of the relatively weak
straining process
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Rapid filamentation zone formation

to suppress convection and eventually
e | resulted in moat formation

At the height of 5 km,
averaged from 0500 to 0700 UTC 16 Sep (12 hours before SEF)




Balanced aspects of SEF: Early stage

vortex: CNTL latent heating: NoSolarRad
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* The absence of diabatic heating forcing and resulted smaller » in
the moat region in CNTL is more important for moat formation in
the early stage of SEF



Balanced aspects of SEF: Late stage

WRF CNTL vortex: CNTL latent heating: NoSolarRad

WRF NoSolarRad SE vortex: NoSolarRad latent heating: NoSolarRad SE
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* The enhanced inertial stability is more efficient in the low-level
(above BL) wind intensification than enhancing latent heating near
the incipient outer eyewall in the later stage of SEF



Conclusion

& region is highly sensitive to the
mostly in the mid- to upper-level at daytime, which leads to a net

effect and

¢ The feedback between the surface
fluxes (that promote convection) and convective heating (that feeds to

the secondary circulation and then the tangential wind).

& NoSolarRad: solar radiation, active rainband,

suppressed primary eyewall,

¢ The radiation-induced is more important on

formation in the



Future work

¢ Response of nonlinear boundary layer dynamics to

radiation and impact on SEF
¢ Asymmetric aspect of impact of radiation on SEF

& The robustness of the sensitivity of SEF to diurnal solar

insolation cycles€& TC with different intensities and sizes

¢ The impacts of the diurnal radiation cycle to the timing

and radial location of SEF
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