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1. Introduction∗  
 The quasi-geostrophic (QG) system of equations has been 
very useful for studying and understanding the large-scale 
and synoptic-scale dynamic processes (Hoskins et al. 1985). 
The QG system is also useful for studying the interactions 
between the synoptic-scale and mesoscale processes as the 
secondary circulation forced by the primary geostrophically 
balanced flow in the QG system plays a key role in the 
development of some subsynoptic-scale flow phenomena 
such as fronts. However, the classic QG system was 
formulated and has been widely used in the pressure 
coordinate with the lower boundary set to the mean sea level 
pressure. When the secondary circulation was diagnosed 
from this system, the effects of surface pressure variations 
and their interactions with the terrain were neglected. To 
solve this and other related problems, a QG system is 
derived in terrain-following coordinates. This QG system 
preserves the potential vorticity (PV) conservation and 
contains the effects of terrain and surface pressure variation. 
A complete set of diagnostic equations is derived for the 
secondary circulation in the new QG system, and this set of 
diagnostic equations also contains the effects of terrain and 
surface pressure variation. 
 
2. PE systems in η  coordinates 
 The PE system in η-coordinates is given by 
 
  dtv + fk×v + ∇φ + ηα∇µ = 0, (1a) 
  dtθ = 0, (1b) 
  ∂ηφ = -µα, (1c) 
  dtµ + µ∇3·v3 = 0, (1d) 
  α = θR(µη + pt)k-1/p0

k, (1e) 
 

where dt ≡ ∂t + v3⋅∇3, ∇3 ≡ (∇, ∂η), ∇ ≡ (∂x, ∂y), v3 ≡ (v, ω), v 
≡ (u, v) is the horizontal velocity along the η-surface, η ≡ (p - 
pt)/µ, µ = ps - pt, ω ≡ dtη is the vertical velocity in η 
coordinates, α is the specific volume, θ is the potential 
temperature, k = R/cp, R is the gas constant, cp is the specific 
heat under constant pressure, and p0 is the mean sea level 
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pressure. The PV equation is dtq = 0, where q = (fk + 
∇3×v3)·∇3θ/µ is the PV in this PE system.  
 
3. Geostrophy in η  coordinates 
 The geostrophic wind vg is constrained by  
 
  fok×vg + ∇φ' + ηαo∇µ' = 0, (2) 
 
where ( )'  ≡ ( ) - ( )o and ( )o denotes the averaged value of ( ) 
over each η-surface. Substituting vg ≡ k×∇ψg into (2) gives  
 
  foψg = φ' + ηαoµ'.  (3) 
 
The divergence and vertical vorticity of the geostrophic wind 
are given by 
 
  ∇⋅vg = ∇⋅(k×∇ψg) = 0 
and ζg ≡ ∇×vg = ∇2ψg,  
 
respectively. 
 
4. QG system in η  coordinates 
 The QG-truncated (1a) is  
 
  dgvg + fok×v' + fk×vg + ∇φ' + ηαo∇µ' = 0, (4) 
 
where dg ≡ ∂t + vg⋅∇ and v' ≡ v - vg is the ageostrophic wind 
in this QG system. Subtracting (2) from (4) gives 
 
  dgvg + fok×v' + f'k×vg = 0.  (5a) 
  
The QG-truncated (1b)-(1e) are given by  
 
  dgθ' + ω∂ηθ0 = 0,  (5b) 

  ∂ηφ' = -µ0α',  (5c) 

  dgµ' + µ0∇3·v3 = 0,  (5d) 
  r0α' = θ',  (5e) 
 
where r0 ≡ (µ0η + pt)1-kp0

k/R, and (1e) is truncated to α = θ/r0 
with r0α0 = θ0.  
 The QG vorticity equation is given by k·∇×(5a): 
 
  dgζg + fo∇·v' + vg·∇f' = 0, 
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or      dgZg + fo∇·v' = 0,  (6) 
 

where Zg = f + ζg, k·∇×(fok×v') = fo∇·v' and k·∇×(f’k×vg) = 
∇·(f'vg) = vg·∇f' = vg·∇f are used.  

 Combining (6) with fo∂η[(5b)/∂ηθo] and using (5d) give the 
following PV conservation equation: 

 
  dgqqg = 0,  (7) 

 

where qqg ≡ Zg + fo∂η(θ'/∂ηθo) - foµ'/µo is the PV for this QG 
system. This PV can be considered as a linearized leading-
order truncation of the semi-geostrophic (SG) PV, defined 
by qsg ≡ -(fk + ∇3×vg)⋅∇3θ/µ in a SG system [derived 
similarly to the semibalance system (Xu and Cao 2012) 
except that the primary flow is vg defined in (2) instead of 
the nonlinearly balanced flow vb]. Such a linearized leading-
order truncation of qsg is derived through the following steps: 
  
 qsg ≈ -(fk + ∇×vg)⋅∇3θ/µ  

 = -fo(∂ηθo/µo)[1 + (f' + ∇2ψg)/fo](1 + ∂ηθ'/∂ηθo)/(1 + µ'/µ o) 

 ≈ -fo(∂ηθo/µo)[1 + (f' + ∇2ψg)/fo + ∂ηθ'/∂ηθo - µ'/µ o] 

 ≈ -(∂ηθo/µo)qqg, 
 

where ∂ηθ'/∂ηθo ≈ ∂η(θ'/∂ηθo) is used in the last step. Note 

that -∂ηθo/µo > 0 and dg(∂ηθo/µo) = 0, so -(∂ηθo/µo)qqg has the 
same sign as qqg and is also conserved in the above QG 
system. 

 Note from (5e), (5c) and (3) that θ' = roα' = ro∂ηφ'/µo = 

rofo∂ηψg/µo - θoµ'/µo. Substituting this into qqg ≡ Zg + 

fo∂η(θ'/∂ηθo) - foµ'/µo gives 
 

  qqg = f + ∇2ψg + fo
2ro∂η(∂ηψg/∂ηθo)/µo  

        + fo[θo∂η2θo/(∂ηθo)2 - 2]µ'/µo,  (8) 
 

so qqg is invertible for given µ' and boundary values of ψg (= 
φ' + ηαoµ').  
 
5. Secondary circulation – v3' ≡ (v', ω) 
 The secondary circulation consists of the ageostrophic wind 
v' and vertical velocity ω. To obtain a complete solution of 
the secondary circulation, it is necessary and convenient to 
partition v' into two parts: a barotropic part and a baroclinic 
part (Xu and Keyser 1993). The barotropic part of v' is 
denoted and defined by v'b ≡ ∫0

1v'dη. As shown later in (13), 
this part can be solved in terms of ψ3, defined by k×∇ψg ≡ v'b, 
from the vertical component of the C-vector equation (Xu 
1992). The baroclinic part of v' is denoted and defined by v'a 

≡ v' - v'b, so it satisfies ∫0
1v'adη = ∫0

1v'dη - v'b  = 0. As shown 
later in (18), this part can be solved in terms of Ψ  from the 
horizontal component of the C-vector equation, where Ψ  ≡ 

(ψ1, ψ2)T is the vector psi-streamfunction defined by -∂ηΨ  ≡ 

v'a with the homogeneous boundary conditions of Ψ  = 0 at η 
= 0 and 1.  
 From (5c) and (5e) we obtain  
 

  ∂tθ' = -ro∂η∂tφ'/µo.   (9) 
 

Substituting (9) into (5b) gives 
 

-ω∂ηθo = vg⋅∇θ' - ro∂η∂tφ'/µo,   

or     -µoαoω∂ηlnθo = µoαovg⋅∇θ'/θo - ∂η∂tφ'.  (10) 
 

Combining -fok×(5a) + k(10) gives  
 

  Πv3' = P - ∂t∇3φ' - ∂t∇(foψg - φ'),  (11) 
 

where  
 
  Ρ  ≡ fok×A + kB,  
  A ≡ vg⋅∇vg - f'∇ψg, 
  B = µoαovg⋅∇θ'/θo,  

  Π  = (fo
2, fo

2, -µ0α0∂ηlnθ0)diag.  
 
 The C-vector diagnostic equation for the secondary 
circulation can be derived from ∇3×(11); that is, 
 
  ∇3×(Πv3') = 2C,  (12) 

 
where  
 

  2C = ∇3×Ρ  - k×∇∂η∂t(foψg - φ')  

  = ∇3×(fok×A + kB) - k×∇[(αo + η∂ηαo)∂tµ']  

  = fok(∇·A) - fo∂ηA - k×∇[B + (αo + η∂ηαo)∂tµ'], 
 

where ∇3×∇3φ' = 0, ∇3×∇(fψg - φ') = k×∇∂η(fψg - φ') = (αo + 

η∂ηαo)k×∇µ' [see (3)], ∇3×(k×A) = k(∇·A) - ∂ηA for A = 

(A1, A2, 0)T and ∇3×(kB) = -k×∇B are used. Integrating the 
vertical component of (12) over the entire depth from η = 0 
to 1 gives the following diagnostic equation for ψ3: 
 
  fo∇

2ψ3 = ∫0
1[∇·(f’∇ψg) - 2Jxy(∂xψg, ∂yψg)]dη,  (13) 

 
where v' = v'a + v'b, ∫0

1v'adη = 0 and v'b = k×∇ψg are used. 
 Substituting v' = v'a + v'b = k×∇ψ3 - ∂ηΨ  and vg = k×∇ψg 
into (5d) gives:  
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  ∂ηω = -∇·v - vg·∇µ'/µo - ∂tµ'/µo 

  = ∂η∇·Ψ  - [Jxy(ψg, µ') + ∂tµ']/µo.  (14) 
 

Integrating (14) over the entire depth from η = 0 to 1, with 
the homogeneous boundary conditions of ω = 0 and Ψ  = 0 at 
η = 0 and 1, gives 
 
  ∂tµ' = Y(µ', 1, ψg) ≡ Jxy(µ', ∫0

1ψgdη).  (15) 
 
Integrating (14) vertically from 0 to η with the homogeneous 
boundary conditions for ω and Ψ  at η = 0 gives  
 
  ω = ∇·Ψ  + E/µo,  (16) 

 
where E = Y(µ', η, ψg) - ηY(µ', 1, ψg), Y(µ', η, ψg) ≡ Jxy(µ', 

∫0
η
ψgdη), and (15) is used. 

 Combining v' = k×∇ψ3 - ∂ηΨ  with k(16) gives  
 
  v3' = DΨ  + k×∇ψ3 + kE/µo, (17) 

 
where  
 
    ⎛ -∂η   0 ⎞ 
  D ≡ ⎜  0   -∂η ⎟  
    ⎝  ∂x   ∂y ⎠. 
 
Substituting (17) into k×(12) gives the following diagnostic 
equation for Ψ : 
 

DTΠDΨ  = 2Q - DTΠ(k×∇ψ3 + kE/µ0),  (18) 
 
where Q = k×C, k×∇3×( ) = DT( ) and ∂ηv'b = 0 are used. As 
explained earlier, the top and bottom boundary conditions for 
Ψ  are homogeneous; that is, Ψ  = 0 at η = 0 and 1. Admissible 
lateral boundary conditions can be derived in two (Dirichlet 
and Nuemann) types based on the variational formulations of 
(18) similarly to those proposed in Xu and Davies-Jones 
(1993).  
 A single diagnostic equation for ω- ≡ ∇·Ψ  = ω - E/µo can 
be derived from ∇·(18), that is, 
 
 (fo

2∂3
2 + No

2∇·∇)ω- = ∇·[2Q - DTΠ(k×∇ψ3 + kE/µo)],  
 
where No

2 = -µoαo∂3lnθo. Note Y(µ', 0, ψg) = 0 and thus E = 0 
at η = 0 and 1. This gives ω- = ω = 0 at η = 0 and 1. 
Admissible lateral boundary conditions can be derived for ω 
in two (Dirichlet and Nuemann) types based on the variational 
formulations (omitted here). 
 

6. Applications  
 The above QG system uses the same η coordinates as the 
WRF model (Skamarock et al. 2005), so it can be applied 
directly to WRF simulated fields to extract the geostrophic 
flow and its forced secondary circulation affected by terrain 
and surface pressure variation and to diagnose the roles of the 
QG-forced secondary circulation in severe weather initiation. 
Since qqg is conserved and invertible, this QG system can be 
used to study the effects of terrain on geostrophic turbulence 
(Charney 1971) and related predictability problems. 
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