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1. Introduction∗ 
 Spectral formulations were derived (Xu et al. 2016, X16 
hereafter) to efficiently compute the analysis error 
covariance for multistep and multi-scale variational data 
assimilation in which broadly distributed coarse-resolution 
observations are analyzed first and then locally distributed 
high-resolution observations are analyzed in the second step. 
However, the analysis error variance computed from these 
spectral formulations is constant and thus limited to 
represent only the spatially averaged error variance. When 
the coarse-resolution observations used in the first step of 
multi-step and multi-scale variational data assimilation 
become increasingly non-uniform and/or sparse, the error 
variance of the first-step analysis tends to have increasingly 
large spatial variations. In this case, it is necessary to 
overcome the limitation caused by the constant analysis error 
variance estimated from the spectral formulations. To this 
end, semi-empirical formulations are constructed in this 
paper to efficiently estimate the spatial variation of analysis 
error variance by properly combining the error variance 
reduction produced by analyzing each and every coarse-
resolution observation as a single observation, and the 
estimated analysis error variance are used to further estimate 
the related variation in analysis error covariance. The 
detailed formulations are presented in the next three sections 
for one-dimensional cases with increased complexity and 
generality (from uniformly distributed observations with 
periodic extension to non-uniformly distributed observations 
without periodic extension). The improved accuracies of 
these formulations and their positive impacts on the two-step 
variational analysis are demonstrated by idealized 
experiments. Conclusions follow in section 5. 
 
2. Error variance reduction produced by uniform 
coarse-resolution observations  
 When observations are optimally analyzed in terms of the 
Bayesian estimation (see chapter 7 of Jazwinski 1970), the 
background error covariance matrix B is updated to the 
analysis error covariance matrix A according to 

  A = B - BHT(HBHT + R)-1HB, (1) 
 
where R is the observation error covariance matrix, and H is 
the linearized observation operator. For a single observation, 
say, at xm in the one-dimensional space of x, the inverse 
matrix (HBHT + R)-1 in (1) reduces to (σb

2 + σo
2)-1, so the ith 

diagonal element of A is simply given by  
 
  σm

2(xi) ≡ σb
2 - γb[σbCb(xi - xm)]2,  (2) 
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where γb = σb

2/(σb
2 + σo

2), σb
2 (or σo

2) is the background (or 
observation) error variance, Cb(x) is the background error 
correlation function, xi denotes the ith point in the discretized 
analysis space RN, N is the number of grid points over the 
analysis domain.  The length of the analysis domain is D = 
N∆x, where ∆x is the analysis grid spacing and D is assumed 
to be much larger than the background error de-correlation 
length scale L. 
 Note that Cb(x) is a continuous function of x, so (2) can be 
written into σm

2(x) ≡ σb
2 - ∆σm

2(x) also as a continuous 
function of x, where 
 
  ∆σm

2(x) ≡ γb[σbCb(x - xm)]2 (3) 
 
is the error variance reduction produced by analyzing a single 
observation at x = xm. The error variance reduction in (3) 
decreases rapidly as |x - xm| increases, and it becomes much 
smaller than it peak value of γbσb

2Cb
2 at x = xm as |x - xm| 

increases to L. This implies that the error variance reduction 
produced by analyzing M sparsely distributed coarse-
resolution observations can be estimated by properly 
combining the error variance reduction computed by (3) for 
each coarse-resolution observation as a single observation.  
 Assume that the M coarse-resolution observations are 
uniformly distributed with a resolution of ∆xco ≡ D/M in the 
above analysis domain that can be extended periodically. In 
this case, the error variance reduction produced by each 
observation can be considered as an additional reduction to 
the reduction produced by its neighboring observations, and 
this additional reduction is always smaller than the reduction 
produced by the same observation but treated as a single 
observation. This implies that the error variance reduction 
produced by analyzing the M coarse-resolution observations, 
denoted by ∆σM

2(x), is bounded above by ∑m∆σm
2(x); that is,  

 
  ∆σM

2(x) ≤ ∑m∆σm
2(x),  (4) 

 
where ∑m denotes the summation over m for the M 
observations. The equality in (4) is for the limiting case of 
∆xco/L → ∞ only. The inequality in (4) implies that the 
domain averaged value of ∑m∆σm

2(x) is larger than the true 
averaged reduction estimated by ∆σbe

2 ≡ σb
2 - σe

2, where σe
2 is 

the domain averaged analysis error variance estimated by the 
spectral formulation for one-dimensional cases in section 2.2 
of X16.  
 The domain averaged value of ∑m∆σm

2(x) can be 
computed by  

  ∆σbs
2 ≡ ∫Ddx∑m∆σm

2(x)/D = γbσb
2∑m∫DdxCb

2(x - xm)/D  
  ≈ γbσb

2∑m∑iCb
2(xi - xm)/N, (5a) 

 
where ∫Ddx denotes the integration over the analysis domain, 
∑i denotes the summation over i for the N grid points, and D 



 
2 

= N∆x is used in the last step. By extending Cb
2(x - xm) with 

the analysis domain periodically, ∆σbs
2 can be also estimated 

analytically as follows: 
 
  ∆σbs

2 ≡ ∫Ddx∑m∆σm
2(x)/D  

  = γbσb
2∑m∑k∫DdxCb

2(x - xm - kD)/D 
  = γbσb

2M∫dxCb
2(x)/D = γbσb

2I1L/∆xco, (5b) 
 
where ∫dx denotes the integration over the infinite space of x, 
∑m∑k∫DdxCb

2(x - xm - kD) = ∑m∫dxCb
2(x - xm) = ∑m∫dxCb

2(x) = 
M∫dxCb

2(x) is used in the second to last step, and I1 ≡ 
∫Cb

2(x)dx/L is used with ∆xco ≡ D/M in the last step. For the 
double-Gaussian form of Cb(x) = 0.6exp(-x2/2L2) + 0.4exp(-
2x2/L2)] used in (5) of X16, we have I1 = (2π)1/2(0.44/21/2 + 
0.48/51/2). The analytically derived value in (5b) is very close 
to (slightly larger than) the numerically computed value from 
(5a). With the domain averaged value of ∑m∆σm

2(x) adjusted 
from ∆σbs

2 to ∆σbe
2, ∆σM

2(x) can be estimated by 
 
  ∆σM

2(x) = ∑m∆σm
2(x) - ∆σbs

2 + ∆σbe
2. (6) 

 
The analysis error variance, σa

2(x), is then estimated by  
 
  σa

2(x) ≈ σa*
2(x) ≡ σb

2 - ∆σM
2(x).  (7) 

 
 As shown by the example in Fig. 1 (in which D = 110.4 km 
is the same as that in section 3 of X16 but M is reduced from 
20 to 10 and thus ∆xco = D/M = 11.04 km is close to L = 10 
km), the estimated σa*

2(x) in (7) has nearly the same spatial 
variation as the benchmark σa

2(x) that is computed precisely 
from (1), although the amplitude of spatial variation of σa*

2(x), 
defined by maxσa*

2(x) - minσa*
2(x), is slightly smaller than 

that of the true σa
2(x), defined by maxσa

2(x) - minσa
2(x).  
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Fig. 1. Benchmark analysis error variance σa

2(x) plotted by 
red solid curve, and estimated analysis error variance σa*

2(x) 
in (7) plotted by blue dotted curve. The green dashed line 
shows the constant analysis error variance σe

2 estimated 
from the spectral formulation in section 2.2 of X16. The 
purple + signs show the observation error variance (σo

2 = 
2.52 m2s-2) at the locations of M (= 10) uniformly distributed 
coarse-resolution observations with ∆xco = D/M (= 11.04 
km). The background error covariance σb

2Cb(x) is the same 
as the double-Gaussian form used in section 3 of X16; that 

is, Cb(x) = 0.6exp(-x2/2L2) + 0.4exp(-2x2/L2)] with σb
2 = 52 

m2s-2 and L = 10 km. The analysis domain and grid are the 
same as those described in section 3.1 of X16; that is, D = 
N∆x = 110.4 km with N = 260 and ∆x = 0.24 km, but the 
number of coarse-resolution observations are reduced from 
M = 20 to 10. 
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Fig. 2. Amplitude of spatial variation of benchmark σa

2(x), 
defined by maxσa

2(x) - minσa
2(x),  plotted by red solid curve 

as a function of ∆xco/L. Amplitude of spatial variation of 
estimated σa*

2(x), defined by maxσa*
2(x) - minσa*

2(x), plotted 
by blue dotted curve as a function of ∆xco/L. 
 
 As shown in Fig. 2, the amplitude of spatial variation of 
benchmark σa

2(x) decreases rapidly to virtually zero and then 
exactly zero (or increases monotonically toward its 
asymptotic upper limit of γbσb

2 = 20 m2s-2) as ∆xco/L decreases 
to 0.5 and then to ∆x/L = 0.1 (or increases toward ∞), and this 
decrease (or increase) of the amplitude of spatial variation of 
σa

2(x) with ∆xco/L is closely captured by the amplitude of 
spatial variation of the estimated σa*

2(x) as a function of 
∆xco/L.  
 Using the estimated σa*(x) in (7), the previously estimated 
analysis error covariance matrix, denoted by Ae with its ijth 
element given by Aeij ≡ σe

2Ca(xi - xj), from the spectral 
formulations in section 2.2 of X16 can be modified into Aa, 
Ab or Ac with its ijth element given by 
 
  Aaij ≡ σa*(xi)σa*(xj)Ca(xi - xj),   (8a) 
  Abij ≡ σa*

2[(xi + xj)/2]Ca(xi - xj),  (8b) 
or  Acij ≡ Aeij + {σa*

2[(xi + xj)/2] - σe
2}Cb(xi - xj). (8c) 

 
The formulation in (8a) is conventional, as in (2.1) of Purser 
et al. (2003) or originally (11) of Rutherford (1972), in which 
the covariance is modified by applying σa*(x) separately to 
each entry (indexed by i and j) of Ca(xi - xj) to retain the self-
adjointness. The expression of Aaij in (8a) can be viewed 
alternatively as Aeij plus a correction term of [σa*(xi)σa*(xj) - 
σe

2]Ca(xi - xj). Ideally, a correction term should completely 
offset the deviation of Aeij from the true covariance, but the 
above correction term used in (8a) offsets only a part of the 
deviation.  
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Fig. 3. Structure of benchmark A plotted by color contours 
every 1 m2s-2 for the case in Fig. 1. 
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Fig. 4. (a) Deviation of Ae from benchmark A in Fig 3 
plotted by color contours every 0.5 m2s-2. Deviations of Aa, 
Ab and Ac from benchmark A are plotted by color contours 
every 0.2 m2s-2 in panels (b), (c) and (d), respectively. Here, 
Ae is the previously estimated analysis error covariance 
matrix with its ijth element given by Aeij ≡ σe

2Ca(xi - xj) as 
shown in section 2.2 of X16, while Aa, Ab and Ac are the 
newly modified estimates of A as shown in (8a), (8b) and 
(8c), respectively.  
 
 For the case in Fig. 1, the benchmark analysis error 
covariance matrix, denoted by A, is computed precisely from 
(1) and is plotted in Fig. 3, while the deviations of Ae, Aa, Ab 
and Ac from the benchmark A are shown in Figs. 4a, 4b, 4c, 
and 4d, respectively. As shown, the deviation becomes 
increasingly small when Ae is modified successively to Aa, Ab 
and Ac. Note that the aforementioned correction term used in 
(8a) is Ca(xi - xj) modulated by σa*(xi)σa*(xj) - σe

2. This 
modulation has a chessboard structure, while the desired 
modulation revealed by the to-be-corrected deviation of Ae in 
Fig. 4a has a banded structure (along the direction of xi + xj = 
constant, perpendicular to the diagonal line). This explains 
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why the correction term in (8a) offsets only a part of the 
deviation as revealed by the deviation of Aa in Fig. 4b. On the 
other hand, the correction term used in (8b) is modulated by 
σa*

2[(xi + xj)/2] - σe
2. This modulation not only retains the self-

adjointness but also has the desired banded structure, so this 
correction term is an improvement over that used in (8a), as 
shown by the deviation of Ab in Fig. 4c versus that of Aa in 
Fig. 4b. However, as revealed by Fig. 4c, the deviation of Ab 
still has two significant maxima (or minima) along each band 
on the two sides of the diagonal line of xi = xj, while the to-be-
corrected deviation of Ae in Fig. 4a has a single maximum (or 
minimum) along each band. This implies that the function 
form of Ca(xi - xj) is not sufficiently wide for the correction. 
As a further improvement, this function form is widened to 
Cb(xi - xj) for the correction term in (8c), so the deviation of 
Ac in Fig. 4d is further reduced from that of Ab in Fig. 4c. 
 When an estimated A is used to update the background 
error covariance in the second step for analyzing the high-
resolution observations in the nested domain, the accuracy of 
the second-step analysis depends not only, to a certain extent, 
on the number of iterations performed by the minimization 
algorithm but also on the accuracy of the estimated A over the 
nested domain plus its extended vicinities within the distance 
of 2La outside the nested domain. Here, La is the de-
correlation length scale of Ca(x) defined by La

2 ≡ [-
Ca(x)/dx

2Ca(x)]|x=0 [see (4.3.10) of Daley 1991], and La (= 4.45 
km for the case in Figs. 1 and 3) can be easily computed as a 
by-product from the spectral formulation in (3) of X16. Over 
this extended nested domain, the relative error (RE) of the 
estimated Ae with respect to the benchmark A can be 
measured by  
 
  RE(Ae) ≡ ||Is(Ae - A)Is||F/||IsAIs||F, (9) 

 
where Is denotes the unit matrix in the subspace associated 
with the grid points in the extended nested domain and thus 
Is(Ae - A)Is (or IsAIs) is the sub-matrix of Ae - A (or A) 
associated only with the grid points in the extended nested 
domain, and ||( )||F denotes the Frobenius norm of ( ) defined 
by the square root of the sum of the squared absolute values 
of the elements of the matrix in ( ) [see (2.2-4) of Golub and 
Van Loan 1983]. The REs of Aa, Ab and Ac can be measured 
by the same form of Frobenius norm ratio as that defined for 
Ae in (9). The REs of Ae, Aa, Ab and Ac are computed for the 
case in Fig. 1 and listed in the first column of Table 1. As 
shown by the listed values, the RE becomes increasingly 
small when Ae is modified successively to Aa, Ab and Ac, and 
this is consistent with and also quantifies the successively 
reduced deviation shown in Figs. 4a-4d.  
 To examine to what extent the successively improved 
estimate of A in (8) can improve the two-step analysis, 
idealized experiments are designed similarly to those in 
section 3.2 of X16, but here we have four types of two-step 
experiments, named TEe, TEa, TEb and TEc, in which Ae, Aa, 
Ab and Ac are used, respectively, to update the background 
error covariance for analyzing the high-resolution innovations 
in the second step. The single-step experiment (in which all 
the innovations are analyzed together in a single step) is 
similar to that in X16 and is still named SE. The TEe is 
similar to the first type of two-step experiment (named TEA) 
in X16, but the TEa, TEb and TEc are new here. Besides, a 
set of simulated innovations is newly generated for the above 

five types of experiments. This new set, called the first set, 
consists of M (= 10) uniformly distributed coarse-resolution 
innovations over the analysis domain of length D = N∆x = 
110.4 km (with N = 460 and ∆x = 0.24 km as those in section 
3 of X16) and M’ (= 74) high-resolution innovations in the 
nested domain of length D/6 (similar to those shown by the 
purple × signs in Fig. 1 of X16 but generated at the grid points 
not covered by the coarse-resolution innovations within the 
nested domain). All the innovations are generated by 
simulated observation errors subtracting simulated 
background errors at observation locations. Observation 
errors are sampled from computer-generated uncorrelated 
Gaussian random numbers with σo = 2.5 ms-1 for both coarse-
resolution and high-resolution observations. Background 
errors are sampled from computer-generated spatially-
correlated Gaussian random fields [with σb = 5 ms-1 and Cb(x) 
modeled by the double-Gaussian form in (5) of X16]. The 
coarse-resolution innovations are thus generated in 
consistency with the case in Figs. 1 and 3.  
 In the SE, the analysis increment is obtained [by 
minimizing the preconditioned cost-function similar to that in 
(7) of X16] with the number of iterations limited to n = 20, 50 
or 100 before the final convergence to mimic the 
computationally constrained situations in operational data 
assimilation. In each two-step experiment, the analysis 
increment is obtained with the number of iterations also 
limited to n = 20, 50 or 100 before the final convergence. The 
accuracy of the analysis increment obtained from each 
experiment with each limited n is measured by its domain-
averaged RMS error (called RMS error for short hereafter) 
with respect to the benchmark analysis increment [computed 
precisely from (1a) of X16]. Table 1 lists the RMS errors of 
the analysis increments obtained from the SE, TEe, TEa, TEb 
and TEc with the number of iterations increased from n = 20 
to 50, 100 and/or the final convergence.  
 
Table 1.  Entire-domain averaged RMS errors (in ms-1) for the 
analysis increments obtained from SE, TEe, TEa, TEb and 
TEc applied to the first set of innovations with periodic 
extension and consecutively increased n, where n is the 
number of iterations. All the RMS errors are evaluated with 
respect to the benchmark analysis increment. The relative 
error (RE) of the estimated analysis error covariance for 
updating the background error covariance in the second step 
of the two-step analysis is listed with the experiment name in 
the first column for each two-step experiment.  

Experiment  n = 20  n = 50  n = 100  Final 

SE  0.671  0.365  0.187  0.013 
at n = 481 

TEe  
RE(Ae) = 0.229  0.171  0.150  0.142  0.135 

at n = 210 
TEa  
RE(Aa) = 0.156  0.169  0.142  0.144  0.144 

at n = 116 
TEb 
RE(Ab) = 0.101  0.147  0.098   0.090 

at n = 67 
TEc  
RE(Ac) = 0.042  0.145  0.063  0.062  0.032 

at n = 176 
 
 As shown in Table 1, the TEe outperforms SE for n = 20, 
50 and 100 but not for n increased to the final convergence. 
The improved performance of TEe over SE is similar to but 
less significant than that of TEA over SE in Table 1 of X16. 
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The reduced improvement can be largely explained by the 
fact that the coarse-resolution innovations are generated here 
more sparsely than those used in section 3.2 of X16 and the 
deviation of Ae from the benchmark A is thus increased (as 
seen from Fig. 4a in comparison with Fig. 5b of X16). The 
TEa outperforms TEe for n = 20 and 50 before n increased to 
100 (which is very close to the final convergence at n = 116 
for TEa). The improvement of TEa over TEe is consistent 
with and can be largely explained by the improved accuracy 
of Aa [RE(Aa) = 0.156] over Ae [RE(Ae) = 0.229]. The TEb 
outperforms TEa for n = 20 and 50 (before the final 
convergence at n = 67). The improvement of TEb over TEa is 
consistent with the improved accuracy of Ab [RE(Ab) = 
0.101] over Aa. The TEc outperforms TEb for each listed 
value of n, and the improvement is consistent with the 
improved accuracy of Ac [with RE(Ac) = 0.042] over Ab.  
 
3. Error variance reduction by non-uniform coarse-
resolution observations with periodic extension 
 Consider that the M coarse-resolution observations are now 
non-uniformly distributed in the analysis domain of length D 
with periodic extension. Their averaged resolution can be 
defined by ∆xco ≡ D/M. The spacing of a concerned coarse-
resolution observation, say the mth observation, from its right 
(or left) adjacent observation can be denoted by ∆xcom+ (or 
∆xcom-). Now we can consider the following two limiting 
cases. 
 First, we consider the case of ∆xcom+ → 0 with ∆xcom- = ∆xco 
(or ∆xcom- → 0 with ∆xcom+ = ∆xco). In this case, the concerned 
mth observation collapses onto the same point with its right (or 
left) adjacent observation, that is, the (m+1)th [or (m-1)th] 
observation. The two collapsed observations should be 
combined into one super-observation with a reduced error 
variance from σo

2 to σo
2/2. The error variance reduction 

produced by this super-observation still can be estimated by 
(3) but with 
 
  γb = σb

2/(σb
2 + σo

2/2). (10a) 
 
On the other hand, without super-Obbing, the error variance 
reduction produced by the two collapsed observations will be 
over-estimated by (3) with   
 
  γb = 2σb

2/(σb
2 + σo

2) = σb
2/(σb

2/2 + σo
2/2). (10b) 

 
By comparing (10b) with (10a), it is easy to see that this 
overestimation can be corrected if the error variance is 
inflated from σo

2 to σo
2 + σb

2 for each of the two collapsed 
observations.  
 Then, we consider the case of ∆xcom+ → 0 and ∆xcom- → 0. 
In this case, the concerned mth observation collapses with its 
two adjacent observations, that is, the (m+1)th and (m-1)th 
observations. The three collapsed observations should be 
combined into one super-observation with a reduced error 
variance from σo

2 to σo
2/3. The error variance reduction 

produced by this super-observation still can be estimated by 
(3) but with 
 
  γb = σb

2/(σb
2 + σo

2/3). (10c) 
 

On the other hand, without super-Obbing, the error variance 
reduction produced by the three collapsed observations will 
be over-estimated by (3) with   
 
  γb = 3σb

2/(σb
2 + σo

2) = σb
2/(σb

2/3 + σo
2/3). (10d) 

 
By comparing (10d) with (10c), it is easy to see that this 
overestimation can be corrected if the error variance is 
inflated from σo

2 to σo
2 + 2σb

2 for each of the three collapsed 
observations. 
 Based on the above analyses, when the error variance 
reduction produced by the mth observation is estimated by (3), 
the error variance should be adjusted for this observation 
unless ∆xcom+ = ∆xcom- = ∆xco. In particular, its error variance 
can be adjusted from σo

2 to σom
2 = σo

2 + ßmσb
2 with ßm given 

empirically by  
 
 ßm = [Cb

2(∆xcom+) + Cb
2(∆xcom-) - 2Cb

2(∆xco)]/[1 - Cb
2(∆xco)]. 

   (11a) 
 
Note that ßm = 2 for ∆xcom+ = ∆xcom- = 0, so the adjusted error 
variance is σom

2 = σo
2 + 2σb

2 which recovers the result derived 
from (10c)-(10d). Note also that ßm = 1 for ∆xcom+ = 0 and 
∆xcom- = ∆xco (or ∆xcom- = 0 and ∆xcom+ = ∆xco), so the adjusted 
error variance is σom

2 = σo
2 + σb

2 which recovers the result 
derived from (10a)-(10b). Clearly, for ∆xcom- = ∆xcom+ = ∆xco, 
ßm = 0, so σo

2 is not adjusted which recovers the result for 
uniformly distributed coarse-resolution observations.  
 The above results suggest that γb = σb

2/(σb
2 + σo

2) should 
be modified into  
  
  γm = σb

2/(σb
2 + ßmσb

2 + σo
2)  (11b) 

 
for the definition of ∆σm

2(x) in (3). This modification can 
improve the similarity of the spatial variation of ∑m∆σm

2(x) to 
that of the true error variance reduction, denoted by ∆σba

2(x) ≡ 
σb

2 - σa
2(x), but the maximum (or minimum) of ∑m∆σm

2(x), 
denoted by ∆σemx

2 (or ∆σemn
2), is usually not very close to that 

of ∆σba
2(x). The maximum (or minimum) of ∆σba

2(x) can be 
closely estimated by ∆σmx

2 (or ∆σmn
2) – the maximum (or 

minimum) of ∆σM
2(x) computed by (6) for uniform coarse-

resolution observations but with ∆xco decreased to ∆xomn (or 
increased to ∆xomx), where ∆xomn (or ∆xomx) is the minimum 
(or maximum) spacing between two adjacent observations 
among all non-uniformly distributed coarse-resolution 
observations in the one-dimension analysis domain. By 
adjusting ∆σemx

2 to ∆σmx
2 and ∆σemn

2 to ∆σmn
2, the error 

variance reduction can be estimated by  
 
  ∆σM

2(x) = F(x) ≡ [∑m∆σm
2(x) - ∆σemn

2]ρ + ∆σmn
2, (12a) 

 
where ρ = [∆σmx

2 - ∆σmn
2]/[∆σemx

2 - ∆σemn
2].  

 The analysis error variance is then estimated by σa
2(x) ≈ 

σa*
2(x) ≡ σb

2 - ∆σM
2(x) as in (7), except that ∆σM

2(x) is 
computed by (12a) instead of (6). As shown by the example in 
Fig. 5, the estimated σa*

2(x) captures closely not only the 
maximum and minimum but also the spatial variation of the 
benchmark σa

2(x) computed from (1). Using this estimated 
σa*(x), the previously estimated Ae from the spectral 
formulations in X16 can be modified into Aa, Ab or Ac with 
its ijth element given by the same formulation as shown in 
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(8a), (8b) or (8c). For the case in Fig. 5, the benchmark A is 
plotted in Fig. 6, while the deviations of Ae, Aa, Ab and Ac 
from the benchmark A are shown in Figs. 7a, 7b, 7c and 7d, 
respectively. As shown, the deviation becomes increasingly 
small when the estimated analysis error covariance matrix is 
modified successively to Aa, Ab and Ac. 
 

 2

 4

 6

 8

 10

 12

 14

 16

 18

-60 -40 -20  0  20  40  60

(m2/s2)

a (x)2σ

e
2σ

a (x)2σ *

o
2σ

x (km)  
Fig. 5. As in Fig. 1 but for M (= 10) non-uniformly distributed 
coarse-resolution observations. 
 

i

j

 
Fig. 6. As in Fig. 3 but for the case in Fig. 5. 
 
 As explained in section 2, the accuracy of the second-step 
analysis depends on the accuracy of the estimated A over the 
extended nested domain (that is, the nested domain plus its 
extended vicinities within the distance of 2La on each side 
outside the nested domain), while the latter can be measured 
by the smallness of the RE of the estimated A with respect to 
the benchmark A, as defined for Ae in (9). The REs of Ae, Aa, 
Ab and Ac computed for the case in Fig. 5 are listed in the first 
column of Table 2. As listed, the RE becomes increasingly 
small when Ae is modified successively to Aa, Ab and Ac, 
which quantifies the successively reduced deviation shown in 
Figs. 7a-7d.  
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j

(d) 

 
Fig. 7. As in Fig. 4 but for the case in Fig. 5. 
 
 Again, idealized experiments are designed and named 
similarly to those in section 2, but the first set of simulated 
innovation data is now replaced by the second set that consists 
of M (= 10) non-uniformly distributed coarse-resolution 
innovations over the analysis domain of length D (= N∆x = 
110.4 km) and M’ (= 74) high-resolution innovations in the 
nested domain of length D/6 (generated at those grid points 
that are not covered by the coarse-resolution innovations 
within the nested domain). All the innovations in this second 
set are generated similarly to those described in section 2 but 
in consistency with the case in Figs. 5-7.  
 
Table 2. As in Table 1 but for the second set of innovations 
with periodic extension. 

Experiment n = 20 n = 50  n = 100  Final  

SE 0.711 0.334 0.276 0.018  
at n = 404 

TEe  
RE(Ae) = 0.355 0.482 0.439  0.442  

at n = 76 
TEa  
RE(Aa) = 0.238 0.418 0.388 0.348 0.353  

at n = 108 
TEb 
RE(Ab) = 0.197 0.318 0.288 0.257 0.243  

at n = 179 
TEc  
RE(Ac) = 0.148 0.213 0.151        0.155  

at n = 52 
 
 The domain-averaged RMS errors of the analysis 
increments obtained from the four two-step experiments are 
shown in Table 2 versus those from the SE. As shown, the 
TEe outperforms SE for n = 20 but not so for n = 50. The 
improvement of TEe over SE is similar to but much less 
significant than that of TEA over SE in Table 2 of X16. This 
reduced improvement can be largely explained by the fact that 
the coarse-resolution innovations are generated here not only 
more sparsely but also more non-uniformly than those in 
section 3.3 of X16 and the deviation of Ae from the 
benchmark A becomes much larger in Fig. 7a here than that in 
Fig. 7b of X16. The TEa outperforms TEe for n = 20 and 50 
but still underperforms SE for n increased to 50 and beyond. 
The improvement of TEa over TEe is consistent with the 

improved accuracy of Aa [RE(Aa) = 0.238] over Ae [RE(Ae) = 
0.355]. The TEb outperforms TEa for each listed value of n 
and also outperforms SE for n up to 100. The improvement of 
TEb over TEa is consistent with the improved accuracy of Ab 
[RE(Ab) = 0.197] over Aa. The TEc outperforms TEb for each 
listed value of n, and the improvement is consistent with the 
improved accuracy of Ac [RE(Ac) = 0.148] over Ab.  
 
4. Error variance reduction by non-uniform coarse-
resolution observations without periodic extension 
 Consider that the M coarse-resolution observations are still 
non-uniformly distributed in the one-dimensional analysis 
domain of length D but without periodic extension. In this 
case, their produced error variance reduction ∆σM

2(x) still can 
be estimated by (12a) except for the following three 
modifications. 
(i) The maximum (or minimum) of ∑m∆σm

2(x), that is, ∆σemx
2 

(or ∆σemn
2) should be found in the interior domain between 

the leftist and rightist observation points. 
(ii) For the leftist (or rightist) observation that has only one 
adjacent observation to its right (or left) in the one-
dimensional analysis domain, its error variance is still 
adjusted from σo

2 to σom
2 = σo

2 + ßmσb
2 but ßm is calculated by 

setting Cb
2(∆xcom-) = 0 [or Cb

2(∆xcom+) = 0] in (11a) for 
calculating γm in (11b). 
(iii) Note from (12a) that ∑m∆σm

2(x) → 0 and thus F(x) → 
∆σmn

2 - ρ∆σemn
2 as x moves outward far away from the leftist 

(or rightist) measurement point and thus far away from all the 
observations points. In this case, if ∆σmn

2 - ρ∆σemn
2 < 0 (as for 

the case in this section), then ∆σM
2(x) estimated by F(x) in 

(12a) may become unrealistically negative as x moves 
outward beyond the leftist (or rightist) measurement point, 
denoted by xmb. To avoid this problem, (12a) is modified into  
 
  ∆σM

2(x) = F(xmb) - [F(xmb) - F(x)]R1 for x beyond xmb, 
   (12b)   
 
where R1 is a factor defined by 
 
  R1 = min{1, [F(xmb)]/[F(xmb) + ρ∆σemn

2 - ∆σmn
2]}.  

 
It is easy to see from (12b) that for ∆σmn

2 - ρ∆σemn
2 < 0 and 

thus R1 < 1, ∆σM
2(x) = F(xmb) - [F(xmb) - F(x)]R1 → 0 as |x| 

→ ∞, so the estimated ∆σM
2(x) in (12b) can never become 

unrealistically negative. 
 The analysis error variance is estimated by σa

2(x) ≈ σa*
2(x) 

≡ σb
2 - ∆σM

2(x) as in (7), except that ∆σM
2(x) is computed by 

(12a) [or (12b)] for x within (or beyond) the interior domain. 
As shown by the example in Fig. 8, the estimated σa*

2(x) 
captures closely the spatial variation of the benchmark σa

2(x) 
not only within but also beyond the interior domain. Using 
this estimated σa*(x), Ae can be modified into Aa, Ab or Ac 
with its ijth element given by the same formulation as shown 
in (8a), (8b) or (8c). For the case in Fig. 8, the benchmark A 
(not shown) has the same interior structure (for interior grid 
points i and j) as that for the case with periodic extension in 
Fig. 6, but significant differences are seen in the following 
two aspects around the four corners (similar to those seen 
from Figs. 7a and 11a of X16): (i) The element value becomes 
large toward the two corners along the diagonal line (which is 
consistent with the increased analysis error variance toward 
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the two ends of the analysis domain as shown in Fig. 8 in 
comparison with that in Fig. 5). (ii) The element value 
becomes virtually zero toward the two off-diagonal corners 
(because there is no periodic extension). The deviations of Ae, 
Aa, Ab and Ac from the benchmark A (not shown) are mostly 
similar to those in Figs. 8a, 8b, 8c, and 8d, respectively. 
Again, the deviation becomes increasingly small when the 
estimated analysis error covariance matrix is modified 
successively to Aa, Ab and Ac. The REs of Ae, Aa, Ab and Ac 
are listed in the first column of Table 3. As listed, the RE 
becomes increasingly small when Ae is modified successively 
to Aa, Ab and Ac, which quantifies the successively reduced 
deviation.  
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Fig. 8. As in Fig. 5 but without periodic extension. 
 
Table 3. As in Table 2 but without periodic extension. 

Experiment n = 20 n = 50  n = 100  Final  

SE 0.499 0.328 0.194 0.012  
at n = 451 

TEe  
RE(Ae) = 0.355 0.463 0.424  0.399  

at n = 73 
TEa  
RE(Aa) = 0.238 0.394 0.358  0.385  

at n = 54 
TEb  
RE(Ab) = 0.196 0.281 0.273  0.248  

at n = 77 
TEc  
RE(Ac) = 0.147 0.215 0.149        0.123  

at n = 77 
 
 Idealized experiments are designed and named as those in 
section 3 except that there is no periodical extension. The 
domain-averaged RMS errors of the analysis increments 
obtained from the four two-step experiments are shown in 
Table 3 versus those from the SE. As shown, the TEe 
outperforms SE for n = 20 but not so for n = 50. The 
improvement of TEe over SE is much less significant than 
that of TEA over SE in Table 3 of X16, and this reduced 
improvement can be explained by the same fact as stated for 
the previous case in section 3. The TEa outperforms TEe for n 
= 20 and 50, and the improvement is consistent with the 
improved accuracy of Aa [RE(Aa) = 0.238] over Ae [RE(Ae) = 
0.355]. The TEb outperforms TEa for each listed value of n, 
which is consistent with the improved accuracy of Ab [RE(Ab) 
= 0.196] over Aa. The TEc outperforms TEb for each listed 

value of n, which is consistent with the improved accuracy of 
Ac [RE(Ac) = 0.147] over Ab.  
 
5. Conclusions 
 The two-step variational method developed in X16 for 
analyzing observations of different spatial resolutions is 
improved by considering and efficiently estimating the spatial 
variation of analysis error variance produced by analyzing 
coarse-resolution observations in the first step. The constant 
analysis error variance computed from the spectral 
formulations in X16 can represent the spatial averaged value 
of the true analysis error variance but it cannot capture the 
spatial variation in the true analysis error variance. As 
revealed by the examples presented in this paper (see Figs. 1-
2, 5 and 8 for one-dimensional cases), the true analysis error 
variance tends to have increasingly large spatial variations 
when the coarse-resolution observations become increasingly 
non-uniform and/or sparse, and this is especially true and 
serious when the separation distances between neighboring 
coarse-resolution observations become close to or even 
locally larger than the background error de-correlation length 
scale. In this case, the spatial variation of analysis error 
variance and associated spatial variation in analysis error 
covariance need to be considered and estimated efficiently in 
order to further improve the two-step analysis.  
 The analysis error variance can be viewed conveniently as 
the background error variance minus the total error variance 
reduction produced by analyzing all the coarse-resolution 
observations. To efficiently estimate the latter, semi-empirical 
formulations are constructed for three types of coarse-
resolution observations in one-dimensional space with 
successively increased complexity and generality (from 
uniformly distributed observations with periodic extension to 
non-uniformly distributed observations without periodic 
extension).  
 The estimated spatially varying analysis error variance is 
used to modify the analysis error covariance computed from 
the spectral formulations of X16 in three different forms [see 
(8)]. The first is a conventional formulation in which the 
covariance is modulated by the spatially varying standard 
deviation separately via each entry of the covariance to retain 
the self-adjointness. This modulation has a chessboard 
structure but the desired modulation has a banded structure 
(along the direction perpendicular to the diagonal line) as 
revealed by the to-be-corrected deviation from the benchmark 
truth (see Fig. 4a), so the deviation is only partially reduced 
(see Fig. 4b). The second formulation is new, in which the 
modulation is realigned to capture the desired banded 
structure and yet still retain the self-adjointness. The deviation 
from the benchmark truth is thus further reduced (see Fig. 4c), 
but the deviation is reduced not broadly enough along each 
band. By properly broadening the reduction distribution in the 
third formulation, the deviation is much further reduced (see 
Fig. 4d).  
 The successive improvements made by the above three 
formulations are demonstrated for all the three types of 
coarse-resolution observations. The improvements are 
quantified by the successively reduced relative errors [REs, 
measured by the Frobenius norm defined in (9)] of their 
modified analysis error covariance matrices with respect to 
the benchmark truths (see REs listed in the first columns of 
Tables 1-3). The impacts of the improved accuracies of the 
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modified analysis error covariance matrices on the two-step 
analyses are examined with idealized experiments that are 
similar to but extend those in X16. As expected, the impacts 
are found to be mostly positive (especially for the third 
formulation) and largely in consistency with the improved 
accuracies of the modified analysis error covariance matrices 
(see Tables 1-3). As new improvements to the conventional 
formulation, the second and third formulations may also be 
useful in constructing covariance matrices with non-constant 
variances for general applications beyond this paper.  
 The formulations constructed in this paper for estimating 
the spatial variation of analysis error variance and associated 
spatial variation in analysis error covariance are effective for 
further improving the two-step variational method developed 
in X16, especially when the coarse-resolution observations 
become increasingly non-uniform and/or sparse. These 
formulations can be extended to two- and three-dimensional 
spaces together with the spectral formulations of X16 for real-
data applications with the variational data assimilation system 
of Gao et al. (2013), in which the analyses are univariate and 
performed in two steps. These extensions are currently being 
developed. 
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