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1. Introduction∗  
 The streamfunction ψ and velocity potential χ have been 
widely used as independent control variables in operational 
variational data assimilation systems on large and synoptic 
scales. For mesoscale data assimilation, the use of (ψ, χ) often 
degrades the analyses, so (u, v) have been used in place of (ψ, 
χ) in the ARPS 3DVar (Gao et al. 1999). The degradations 
caused by using (ψ, χ) were examined with the WRFVar (Sun 
et al. 2016), but reasons for the degradations were largely 
unexplored. Theoretically, if the random vector field of 
horizontal velocity error is homogenous and isotropic as 
assumed in 3DVar, then its associated ψ and χ are 
uncorrelated but u and v are not. This theoretical 
consideration favors the use of (ψ, χ) over (u, v), but the 
conventionally used Gaussian covariance functions need to be 
be modified and generalized in 3DVar for mesoscale wind 
analysis and data assimilation. The related issues are 
examined in this paper.  
 
2. Covariance functions in 3DVar for wind analyses  
 The covariance of background wind errors that involves 
two points, say, xi = (xi, yi) and xj = (xj, yj) on a vertical level 
is a second-order tensor function denoted and defined by  
 
  Cvv(xi, xj) ≡ <vivj

T>,  (1) 
 
where <( )> denotes the statistical mean of ( ), vi is the 
background wind error of zero mean at xi, and ( )T denotes the 
transpose of ( ). Projecting vi onto the l-direction along r = xj - 
xi (see the blue arrow in Fig. 1) and onto the t-direction 
perpendicular to r with positive to the left, the resulting 
components are denoted by li and ti, respectively (see Fig. 1). 
These two components are related to vi = (ui, vi)T by (li, ti)T = 
Rvi where R = R(α) is the rotational matrix that rotates the x-
axis to the l-direction and α ≡ tan-1[(yj - yi)/(xj - xi)] is the 
angle of the rotation, measured positively counterclockwise.  

xj xi  
lj 

tj 
ti 

li 

r 

 
Fig. 1. vi and vj (shown by red arrows), their l-components 
(green arrows labeled by li and lj) and t-components (green 
arrows labeled by ti and tj).  
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 In 3DVar, the random vector field of vi (or vi normalized by 
its standard deviation σ if σ is a function of x) is assumed to be 
homogenous and isotropic. In this case, Clt ≡ <litj> = Ctl ≡ <tilj> 
= 0, and Cvv can be transformed into the following canonical 
form: 
 
  (Cll, Ctt)diag = RTCvvR,  (2) 

where Cll ≡ <lilj> and Ctt ≡ <titj> are functions of r = |r| only. 
This canonical form is invariant with respect to translations 
and rotations of the system of points xi and xj. As shown in 

(5.2.23)-(5.2.24) of Daley 1991, Cll and Ctt are related to Cψψ 

≡ <ψiψj> and Cχχ ≡ <χiχj> by  

  Ctt = -(∂r
2Cψψ + r-1∂rCχχ),  

  Cll = -(r-1∂rCψψ + ∂r
2Cχχ). (3) 

 
 By partitioning v into a rotational (or non-divergent) part 
defined by vr

 ≡ (-∂yψ, ∂xψ)T and a divergent part defined by 
vd

 ≡ (-∂xχ, ∂yχ)T, we have <vr
ivd

j
T> = <vd

ivr
j
T> = 0 and thus 

Cvv = Cr + Cd where Cr ≡ <vr
ivr

j
T> and Cd ≡ <vd

ivd
j
T>. As 

shown in (2.14) of Xu and Wei (2001), the traces of Cr and 

Cd are related to Cψψ and Cχχ by  
 

  Cr ≡ Tr(Cr) = -(∂r
2 + r-1∂r)Cψψ ≡ -∇2Cψψ 

and Cd ≡ Tr(Cd) = -(r-1∂r + ∂r
2)Cχχ ≡ -∇2Cχχ,  (4) 

 
respectively, where Tr( ) denotes the trace of ( ). 

 When Cψψ and Cχχ are modeled by Gaussian functions (with 
their associated operators mimicked by recursive filters), 

∂r
2Cψψ and ∂r

2Cχχ contain negative sidelobes and so do the 
components of Cvv. This is shown by the exemples in the 
following two cases. 

Case-1. For Cψψ = Cχχ ∝ exp[-r2/(2L2)], we have Cuv = Cvu = 0 

and Cuu = Cvv = Cll = Ctt = -∇2Cψψ. In this case, Cuu = -∇2Cψψ 
contains a negative sidelobe on each side for r > 1.5L as 
shown in Fig. 2. 

Case-2. For Cψψ ≠ Cχχ, we have Cuv= -Cvu ≠ 0 and Cvu is 90o-
rotated Cuv, Cuu ≠ Cvv but Cvv is 90o-rotated Cuu. In this case, 

Cuu contains negative sidelobes as shown in Fig. 3 for Cψψ = 

2Cχχ. 
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Fig. 2. Normalized function form of Cuu(r) (= -∇2Cψψ), that is, 

Cuu(r)/Cuu(0) for case-1 with Cψψ = Cχχ ∝ exp[-r2/(2L2)]. 
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Fig. 3. Contours of Cuu(r)/Cuu(0) for case-2 with Cψψ = 2Cχχ 
∝ exp[-r2/(2L2)].  
 
 Negative sidelobes in Ctt ≡ <titj> on the synoptic scale 
reflect background wind error structures associated with 
baroclinic waves. A schematic illustration of this is given in 
Fig. 4, where the background winds associated with the 
baroclinic wave are assumed to be overpredicted, so the 
background wind errors largely follow the same directions of 
their associated true winds and their t-components at xi and xj 
are thus negatively correlated as shown by the two green 
arrows (denoted by ti and tj). Similarly, if the baroclinic wave 
are underpredicted, then the background wind errors will be 
largely opposite to the directions of their associated true 
winds, so the two green arrows in Fig. 4 will both reverse 
their directions and thus the two t-components, ti and tj, will 
be still negatively correlated. 
 Negative sidelobes in Ctt on the synoptic scale are also 
revealed by Ctt estimated from radiosonde innovations, as 
shown by the example in Fig. 5. 
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12:00 UTC, 8 July 2107, 500 mb UA Obs
  

Fig. 4. Schematic illustration of negative correlation between 
ti and tj over the distance of r (shown by the blue arrow) on 
the synoptic scale associated with the baroclinic wave on 500 
mb. 
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Fig. 5. Ctt(r) in m2s-2 estimated from binned <td

itd
j> at 500 mb, 

where td
i (or td

i) denotes the rawinsonde innovation 
(observation minus background) at the ith (or jth) observation 
point. The background wind error variance is estimated by 
Ctt(0), that is, Ctt(r)|r=0. The observation error variance is 
estimated by <(td

i)2> - Ctt(0). The data are originally from Fig. 
3b of Xu and Wei (2001). 
 
3. Issues in 3DVar on mesoscale wind analyses 
 Negative sidelobes in Ctt and C+ ≡ Ctt + Cll = Tr(Cvv) have 
physical and statistical relevance on the synoptic scale (as 
shown in the previous section) but not on the mesoscale. 
There should be no negative sidelobe in C+, Cr or Cd on the 
mesoscale. This is evidenced by C+, Cr and Cd estimated from 
radar radial-wind innovations (Xu et al. 2007a,b), as shown 
by the examples in Fig. 6. 
 When ψ and χ are used as control variables in 3DVar with 

Cψψ and Cχχ modeled by Gaussian functions, negative 
sidelobes generated in C+(r), Cr(r) and Cd(r) can cause 
spurious features in analyzed winds especially outside and 
around data covered areas (as often observed in mesoscale 
wind analyses performed with high-resolution radar wind 
data). This provides a theoretical explanation for the 
aforementioned degradations in mesocale wind analyses. It 
also raises an important issue regarding how to eliminate the 
negative sidelobes in C+(r), Cr(r) and Cd(r) in order to use ψ 
and χ either implicitly or explicitly as control variables in 
3DVar for mesocale wind analyses. 
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Fig. 6. Normalized C+(r), Cr(r) and Cd(r), that is, C+(r)/C+(0), 
Cr(r)/Cr(0) and Cd(r)/Cd(0) estimated from radar radial-wind 
innovations (collected from 6 operational WSR-88D radars in 
Oklahoma and its vicinity states with the background winds 
from operational NMM forecasts) for two cases: (a) in the 
vertical layer between z = 0.4 ± 0.2 km under a clear weather 
condition on 5/21/2005; (b) in the vertical layer between z = 
0.8 ± 0.2 km under a rainy weather condition on 5/23/2005. 
The data for the clear weather case in panel (a) are originally 
from Fig. 5 of Xu et al. (2007b). Note that the depressions of 
the three curves around r = 100 km in panel (a) are unreal and 
unrepresentative as they are caused by date void gaps between 
different radars (see Fig. 4 of Xu et al. 2007b and the related 
slide number 7 in the recorded presentation at https:// 
ams.confex.com/ams/22WAF18NWP/webprogram/Paper123
419.html).  
 
4. Newly modified covariance functions    
 To address the issue raised in the previous section, we need 
to modify the conventional covariance functions reviewed in 
the previous section. First, we need to transform Cr and Cd 
into their respective canonical forms, that is, (Cll

r, Ctt
r)diag = 

RTCrR and (Cll
d, Ctt

d)diag = RTCdR, respectively, similar to 
that in (2) for Cvv (= Cr + Cd). This leads to (Cll, Ctt)diag = (Cll

r, 
Ctt

r)diag + (Cll
d, Ctt

d)diag, so (Cll
r, Ctt

r)diag is the rotational part 
and (Cll

d, Ctt
d)diag is the divergent part of (Cll, Ctt)diag. 

 After the above preparation, the rotational part of Ctt(r), 

that is, Ctt
r(r) ≡ -∂r

2Cψψ can be modeled by σr
2G(r/Lr), where  

 
  G( ) ≡ exp[-( )2/2]  (5) 
 

denotes the Gaussian function form, σr
2 is the error variance 

for each component of vr and Lr is the de-correlation length 
scale for vr. The rotational part of Cll(r) is then given by Cll

r(r) 

= -r-1∂rCψψ = σr
2E(r/Lr), where 

 
  E(r/Lr) ≡ ∫0

r
dr'G(r'/Lr)/r. (6) 

 

Similarly, the divergent part of Cll(r), that is, Cll
d(r) ≡ -∂r

2Cχχ 
can be modeled by σd

2G(r/Ld) where σd
2 is the error variance 

for each component of vd and Ld is the de-correlation length 
scale for vd. The divergent part of Ctt(r) is then given by 

Ctt
d(r) = -r-1∂rCχχ = σd

2E(r/Ld).  
 With the above modifications, we have  
 
  Ctt(r) = Ctt

r(r) + Ctt
d(r) = σr

2G(r/Lr) + σd
2E(r/Ld), 

  Cll(r) = Cll
r(r) + Cll

d(r) = σr
2E(r/Lr) + σd

2G(r/Ld); (7) 
and 
  Cr(r) = Ctt

r(r) + Cll
r(r) = σr

2[G(r/Lr) + E(r/Lr)], 
  Cd(r) = Cll

d(r) + Ctt
d(r) = σd

2[G(r/Ld) + E(r/Ld)]. (8) 
 
For Cr (or Cd) in (8) to have the same de-correlation length, 
defined by [Cr(r)|r=0]1/2/[-∇2Cr(r)|r=0]1/2, as the conventional Cr 
(or Cd) in (4), we need to set Lr (or Ld) = L(11/32) ≈ L/√3. The 
detailed derivation of this setting is omitted here. The 
modified covariance functions in (7)-(8) and their derived Cuu 
and Cvv contain no negative sidelobe, as shown by the 
examples in Figs. 7 and 8 (versus those in Figs. 2 and 3) for 
the following two cases. 
Case-1. For Cr = Cd ∝ G(√3r/L) + E(√3r/Lr) in (8), we have 
Cuv = Cvu = 0 and Cuu = Cvv = Cll = Ctt ∝ G(√3r/L) + E(√3r/L). 
In this case, Cuu (= Cvv) contains no negative sidelobe, as 
shown in Fig. 7. 
Case-2. For Cr ≠ Cd, we have Cuv= -Cvu ≠ 0, Cvu is still 90o 
rotated Cuv, Cuu ≠ Cvv and Cvv is 90o rotated Cuu. In this case, 
neither Cuu nor Cvv (90o-rotated Cuu) has negative sidelobe as 
shown in Fig. 8 for Cr = 2Cd ∝ G(√3r/L) + E(√3r/L) in (8).  
 
    

L
r/L  

Fig. 7. As in Fig. 2 but with the modified Cuu(r) plotted by the 
black curve with Cr = Cd ∝ G(√3r/L) + E(√3r/L) in addition to 
the green curve from Fig. 2 for case 1.  
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Fig. 8. As in Fig. 3 but with the modified Cuu(r)/Cuu(0) plotted 
by the black contours for Cr = 2Cd ∝ G(√3r/L) + E(√3r/L) in 
addition to the color contours from Fig. 3 for case 2. 
 
 
5. Comparative tests with radar observations 
 For 3D wind analyses, Cr(r) and Cd(r) in (8) are extended to  
 
  Cr(r)G(z/Hr)  and Cd(r)G2(zi, zj), respectively, (9) 
 
where G2(zi, zj) = (1- z-

2/Hd
2)G(z-/Hd) + (1- z+

2/Hd
2)G(z+/Hd) 

and z± = zj ± zi. Ctt and Ctt in (7) are also extended 
accordingly. Similar 3D extensions can be made to the 
conventional Cr and Cd in (4) and thus Ctt and Ctt in (3).  
 To examine whether and how the modified covariance 
formulations can improve mesoscale wind analyses over the 
conventional covariance formulations, the conventional and 
modified formulations are both used to construct the 
background error covariance matrix for radar wind analyses in 
a 3DVar formulated similarly to that in Xu et al. (2015) 
except that the radial-velocity formulation is upgraded to 
include the vertical velocity. Facilitated by the upgraded 
radial-velocity formulation and the above 3D extensions of 
covariance functions, the analyzed 3D winds are ensured to 
satisfy the mass continuity and surface boundary condition 
automatically. The detailed formulations are omitted here.  
 The above 3DVar is applied to radial-velocity super-
observations (with a coarsened resolution of 10 km) from the 
operational KTLX radar for the 20 May 2013 Oklahoma 
tornadic storm with the background wind field from 1-hour 
forecast produced by the NCEP operational rapid refresh 
model (RAP). The horizontal-wind increment field produced 
by the 3DVar analysis with each type of covariance 
formulation is shown by the white arrows at z = 2 km in Fig. 
9 superimposed on the image of radial-velocity super-
innovation (super-observation minus background radial-
velocity at each super-observation location) from the KTLX 
radar at 0.5o tilt. 
 As shown in each panel of Fig. 9, the radial components 
of the incremental winds can match quite closely the radial-
velocity super-innovations around z = 2 km, that is, around 
the range circle of 116 km radius (marked by the yellow “•” 

labeled with “z = 2 km”) on the 0.5o tilt. However, the 
incremental winds in panel (a) are less smooth and diminish 
more quickly away from the super-innovation covered area 
than those in panel (b). These are the main differences of the 
incremental winds in panel (a) from those in panel (b), and 
these differences are caused by the negative sidelobes in the 
conventional covariance functions used in panel (a). 
 

•z=2km

(a)

10 m/s

•z=2km

(b)

10 m/s
 

Fig. 9. (a) Horizontal-wind increment field produced by the 
3DVar using the conventional covariance formulations [with 

Cψψ(r) = Cχχ(r) ∝ G(r/L), L = 50 km, and Hr = Hd = H = 0.8 
km] plotted at z = 2 km by white arrows superimposed on 
the images of radial-velocity super-innovation at 0.5o tilt 
from the operational KTLX radar. (b) As in (a) but using the 
modified covariance formulations [with Cr(r) = Cd(r) ∝ 
G(√3r/L)+E(√3r/L)]. The analysis domain is 800x800x10km 
with Δ𝑥 = Δ𝑦 = 5 km and Δ𝑧 = 0.25 km. The color bar on 
the top of each panel is the velocity scale for the radial-
velocity super-innovations.  
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Fig. 10. As in Fig. 9 but with radial-velocity super-
innovations from five radars; that is, the operational KFDR, 
KINX, KVNX and KSRX radars in addition to the KTLX 
radar.  
 
 The above 3DVar is also applied to radial-velocity super-
observations from five operational (KTLX, KFDR, KINX, 
KVNX and KSRX) radars for the same case with the same 
covariance formulations as in Fig. 9a (or 9b), and its 
produced horizontal-wind increment field is shown at z = 2 
km in Fig. 10a (or 10b) superimposed on the images of 
radial-velocity super-innovations from the five radars at their 
respective 0.5o tilts.  
 The radial-velocity increment field (computed from the 
3D wind increment field) produced by the single-Doppler 
analysis that produces Fig. 9a (or 9b) is plotted by the color 
contours in Fig. 11a (or 11b). The radial-velocity increment 
field produced by the five-Doppler analysis that produces 
Fig. 10a (or 10b) is plotted by black contours in Fig. 11a (or 
11b).  
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Fig. 11. (a) Radial-velocity increment field (plotted by color 
contours) at z = 2 km produced by using observations from 
the KTLX radar only (as shown in Fig. 9a) versus that 
(plotted by black contours) produced by using observations 
from the five radars (as shown in Fig. 10a) with the 
conventional covariance formulations. (b) As in (a) but 
produced with the modified covariance formulations. 
 
 As shown in Fig. 11a for the conventional covariance 
formulations, the color contours match the black contours 
closely in the KTLX data covered area (that is, the area 
covered by the KTLX radial-velocity super-innovations as 
shown Fig. 9a) but become increasingly different from the 
black contours beyond the KTLX-covered area. Similar 
features are seen in Fig. 11b for the modified covariance 
formulations, but the color contours and the black contours 
match the KTLX radial-velocity super-innovations more 
tightly in the KTLX data covered area than those in Fig. 11a, 
and the color contours match the black contours more 
closely in and around the KTLX data covered area than 
those in Fig. 11a.  
 For quantitative evaluations, the root mean square (RMS) 
difference between the two radial-velocity increment fields 
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(produced by the single-Doppler and five-Doppler analyses) 
is computed for each type of covariance formulation in each 
of the following three areas (that partition the analysis 
domain at z = 2 km).  
 
I. The area covered by the KTLX super-innovations with 

each super-innovation covering its vicinity volume within 
the ellipsoid of a = b = L and c = H centered at the super-
innovation, where (a, b, c) are the semi-principal axes of 
the ellipsoid in the space of (x, y, z), and L = 50 km (or H 
= 0.8 km) is the de-correlation length (or depth) used in 
the covariance formulations as described in the caption of 
Fig. 9.  

II. The area influenced by the KTLX super-innovations 
outside the above area-I with each super-innovation 
influences its vicinity volume within the ellipsoid of a = b 
= 3L and c = 3H centered at the super-innovation. 

III. The area outside the above area-II.  
 
 The above three areas (marked by I, II and III) are shown in 
Fig. 12. The RMS differences computed in these three areas 
are listed for each type of covariance formulation in Table 1. 
 As shown in Table 1, the RMS difference in area-I is 
reduced by the use of the modified covariance formulations. 
This reduction can be explained by the fact that the five-
Doppler analysis is no longer adversely affected in area-I by 
the negative sidelobes (in the conventional covariance 
functions) that negatively and un-physically correlate the 
analysis increments in area-I to those radial-velocity super-
innovations (from the four radars other than the KTLX radar) 
that are distant from area-I beyond the de-correlation length 
scale L.  
 The RMS difference in area-II is also reduced by the use of 
the modified covariance formulations. This reduction can be 
explained by the fact that the single-Doppler analysis is no 
longer adversely affected in area-II by the negative sidelobes 
(in the conventional covariance functions) that negatively and 
un-physically correlate the analysis increments in area-II to 
the KTLX radial-velocity super-innovations that are distant 
from area-II beyond the de-correlation length scale L.  
 As shown in Figs. 9 and 11, the horizontal-wind increments 
and radial-velocity increments produced by the single-
Doppler analysis diminish to nearly zero in area-III. Thus, for 
each type of covariance formulation, the RMS difference in 
area-III is essentially the RMS value of radial-velocity 
increments produced by the five-Doppler analysis. This 
explains why the RMS difference in area-III is not 
significantly affected by the use of the modified covariance 
formulations as shown in Table 1.  
 
Table 1. RMS difference in each area for each type of 
covariance formulation.  

Covariance 
formulations Conventional Modified 

 RMS difference  RMS difference 
Area-I 0.51 ms-1 0.80 ms-1 
Area-II 0.87 ms-1 1.35 ms-1 
Area-III 0.23 ms-1 0.20 ms-1 

 
 

I

II

III

x (km)

y 
(k
m
)

 
Fig. 12. Three areas (that partition the analysis domain at z = 
2 km) marked by I, II and III. Area-I is enclosed by the brown 
contour. Area-II is between the brown and blue contours. 
Area-III is outside the blue contours, 
 
 
6. Conclusions  
 The results presented in this paper can be summarized and 
highlighted by the following points: 
• Conventionally used Gaussian covariance functions for (ψ, 
χ) cause negative sidelobes in the covariance functions 
derived for (u, v). Negative sidelobes reflect background wind 
error structures associated with baroclinic waves on the 
synoptic scale, but they are unphysical on the mesoscale and 
can cause spurious features in their analyzed winds outside 
and around data covered areas. 
• Using Gaussian covariance functions for u and v separately 
and independently can eliminate the aforementioned negative 
sidelobes, but these covariance formulations are inconsistent 
with the 3DVar-assumed homogeneity and isotropy for the 
random vector field of horizontal wind errors unless the 
rotational and divergent parts of horizontal wind error field 
are statistically equivalent to each other (with Cr = Cd).  
• The modified covariance functions introduced in (7)-(8) of 
this paper can eliminate the aforementioned negative 
sidelobes without the above inconsistency. Their utility in 
3DVar and advantages over their conventional counterparts 
are demonstrated and evaluated by comparative tests with 
radar radial-velocity observations in section 5. 
 The modified covariance functions can be used easily to 
construct the background covariance matrix directly in 3DVar 
for mesoscale wind analyses, but they are non-Gaussian [as 
shown in (7)-(9) of this paper] and thus cannot be readily 
mimicked as operators by the existing recursive filters 
(designed to mimic Gaussian operators). This problem and 
related challenging issues need to be addressed in future 
studies. 
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