Presentation PDF (2.3 MB)
Neutral, geostrophically forced (10 m s1, ~45° N) flow over a flat, rough surface in a 1.5 km deep, 1.28 km square domain with periodic lateral boundary conditions was simulated with the Advanced Regional Prediction System. First, we used the basic Smagorinsky model and the Wong-Lilly dynamic model combined with five different methods and levels of velocity reconstruction on a 40×40×40 grid. Then, we tested the Smagorinsky model and the simplest dynamic reconstruction model on a fine scale 120×120×120 grid.
Differences in layer means among subfilter models were small (but usually statistically significant), but patterns formed in horizontal planes by vertical fluxes of u component momentum (w'u', as ejections, sweeps and upward momentum flux) were sometimes quite different. The coarser grid LES patterns are distinctly different near the surface for different subfilter models. Patterns of spatial correlation in the vertical motion fields also differed among models. Finer resolution generally reduced, but did not eliminate differences. There were significant differences in the length of the zero-flux isopleths, reflecting differences in interface complexity between regions of upward and downward flux. Finer resolution produces longer (more convoluted) interfaces. Differences found here between subfilter models suggest a need for considerable caution when interpreting LES experiments. The dynamic reconstruction model combinations tested produced more realistic mean profiles of wind speed and near-surface flux patterns. Dynamic models with reconstruction allow backscatter of energy that more faithfully mimics interactions between resolved and subfilter scales, thereby yielding a more active spectrum in the smaller scales of the resolved flow.