A nonlinear analytical analysis of terrain-induced canopy flows

Chuixiang (Tree) Yi and Weiguo Wang School of Earth and Environmental Sciences Queens College, City University of New York

AL AREIA

Complex terrain Analytical approach

Real world surface is not flat

Courtesy of David Schimel

Complex terrain is pretty much everywhere I was born from a complex terrain

Canopy flows over a forested hill Analytical theory milestone

A theoretical foundation (no trees) was established by Jackson and Hunt (1975)

Analytical solutions of canopy flows over a forested hill was first obtained by Finnigan and Belcher (2004)

Intensive laboratory studies of canopy flows over a forested hill has been Conducted by Katul and Poggi (2008a,b,c,d,e)

 $adv = u\partial u / \partial x + w\partial u / \partial z$ $PG = \partial P / \partial x$ $\tau = -\overline{u'w'}$

Figure 2. Comparison of canopy velocity perturbation, $\Delta u/U_{SC}$ with the no-canopy solution of Hunt *et al.* (1988; dotted line). Note the Hunt *et al.* solution is only valid to $z = -d + z_0$. Profiles are plotted at a series of X/L values between X/L = -2 (upwind trough) and X/L = 2 (downwind trough). The units of Z are m, and the vertical range is from $2h_i > Z > L_c$. See text for details.

FB04 made great progresses but some weaknesses need to be improved

What are weaknesses of FB04?

- Physical inconsistency -- Constant mixing-length assumption leading to a varying mixing-length.
- A non-slip boundary condition is not able to apply to the nonlinear algebraic equation.
- It is unnecessary to divide a canopy layer into two layers: a linear layer and a nonlinear layer.
- \blacktriangleright No need to assume $\Delta u \ll U_B$

Theoretically, Mixing-length is not constant within canopy!

Large Eddy Simulation demonstrated "that a constant mixing-length assumption is not strictly valid within the canopy." – Andrew Ross (2008 in BLM)

Fig. 7 Profiles of (a) mixing length (L_m) and (b) s

A new nonlinear model – forested hill

Our model can do what FB04 can do, but even better!

Excellent agreement between FBO4 and present model at the crest and troughs.

The S-shaped wind profile on windward side and C-shaped wind profile on leeward side are predicted by the new model rather than by FBO4.

Excellent agreement at the crest and trough

Different on windward and leeward sides

Our model can do what FB04 cannot do! •Varying leaf area density •Varying drag coefficient

A new nonlinear model – varying LAD

What will be lost if we treat non-uniform LAD as uniform LAD?

Summary and Conclusion

Following weaknesses of FB04 have been improved!

- Physical inconsistency -- Constant mixing-length assumption leading to a varying mixing-length.
- A non-slip boundary condition is not able to apply to the nonlinear algebraic equation.
- It is unnecessary to divide a canopy layer into two layers: a linear layer and a nonlinear layer.
- \blacktriangleright No need to assume $\Delta u \ll U_B$

The new model is simpler but more useful!

- Separation level prediction
- ➢ Perform feedback varying LAD → changing U_B in outer region → affecting PG in the inner region → modifying momentum balance in canopy layer

Thank You!