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1. INTRODUCTION

Flash flood monitoring and prediction (FFMP)
is one of the key functions of NOAA’s National
Weather Service (NWS). At present, FFMP is
commonly based on radar/rain gauge multi-sensor
quantitative precipitation estimates (QPEs). In
areas outside of effective radar coverage or with a
sparse rain gauge network, satellite precipitation
estimates (SPEs) can supplement ground-sensor
based QPEs for FFMP (Kondragunta et al., 2005).
There are two potential roles of SPEs in this
respect. The first is to serve as a basis for
determining the rainfall climatology in areas with
poor radar/rain gauge coverage, and the second is
to detect in real time the heavy precipitation
events with high flooding potential in conjunction
with the SPE-based rainfall climatology. An
element of rainfall climatology that is particularly
useful for this purpose is the precipitation amount
with the Annual Exceedance Probability (AEP) of
0.5 — bank-full flow has an AEP of roughly 0.5
(Reed et al. 2007). Although gridded estimates of
precipitation frequency are available for a large
portion of the U.S. from NOAA Atlas 14 (Bonnin et
al., 2006) and its various volumes, the availability
of the SPE values corresponding to 0.5 AEP is still
valuable in that SPE may suffer from bias (Zhang
et al., 2010) and this bias can be offset by using
SPE-based PFEs in the same manner as in
Distributed Hydrologic Model - Threshold
Frequency (DHM-TF) approach (Reed et al.
2007). Therefore, SPE-based PFEs would
provide a good context for judging the flooding
potential of storms as seen from the satellites
(Personal communication, Sheldon Kusselson at
National Environmental Satellite, Data and
Information Service, Satellite Analysis Branch).

To date, there is a body of literature on climate
applications of SPE (e.g., Ferraro 1997, Xie and
Arkin, 1995). Yet, few of the studies used SPE as
the basis for deriving PFEs. Our study fills this
gap by exploring the use of SPE for deriving the
PFEs that could be used as thresholds for

detecting large rainfall amounts with substantial
flash flood potentials. We designed an experiment
and performed it in two phases over 22
catchments in Texas and Louisiana (Fig. 1) with
size range from 218 to around 1975 km? (Table 1).
The first phase entailed deriving two sets of PFEs
using the mean areal precipitation (MAP) time
series for each catchment, with the first based on
the SPE produced using the Self-calibrating
Multivariate Precipitation Retrieval (SCaMPR)
algorithm and the second on West Gulf River
Forecast Center (WGRFC) multisensor QPE
(MQPE). The latter were then used as the
reference to assess the accuracy in the former. In
the second phase, the two sets of PFEs were
used as thresholds in conjunction with respective
QPEs to identify the events, i.e., instances where
these thresholds were exceeded for respective
QPEs. The events derived from SCaMPR SPE
were compared with those from MQPE to examine
the potential skill of SCaMPR for flash flood
applications.

2. DATA AND METHODOLOGY
2.1 SCaMPR and Multi-sensor QPE

The SCaMPR algorithm was developed by
Kuligowski  (2002) in recognition of the
shortcomings in algorithms solely based on GOES
infrared  brightness  temperature (Tp). The
SCaMPR algorithm has been scheduled by NOAA
National Environmental Satellite, Data and
Information Service (NESDIS) to replace the
Hydro-Estimator (H-E) as the operational SPE
algorithm. The SCaMPR framework still relies on
Ty in three GOES infrared channels (6.9, 10.7 and
12.0 or 13.3 pym) as predictors of rain rates, but
uses recent passive microwave (PMW) SPEs from
Low Earth Orbital and Polar Orbiting Satellites, as
well as those from the Tropical Rainfall Measuring
Mission (TRMM; Kummerow et al.,, 1998) as a
reference for calibrating the T, to rain rate
relationship. The calibration process involves first



using TRMM Precipitation Radar QPE to bias-
correct the PMW QPEs from the TRMM
Microwave Imager, and those from the Advanced
Microwave Sounding Unit (AMSU) and Special
Sensor Microwave Imager (SSM/I). The adjusted
PWM QPEs then were used as predicators to
calibrate the T, to rainfall relationship via
discriminant analysis and multiple regression.

Our reference for assessing the SCaMPR
SPE is the multi-sensor QPEs from the NWS West
Gulf River Forecast Center (WGRFC). The
MQPEs are hourly gridded precipitation amounts
on the Hydrologic Rainfall Analysis Project
(HRAP) grid mesh (approx. 4km in dimension).
This data set was created using primarily rain
gauge and radar observations, and it incorporates
extensive manual quality control. Although MQPE
has been shown to be highly reliable for hydrologic
forecasting, past studies suggest that it is subject
to temporally varying bias (Zhang et al., 2011). To
address this issue, we followed the technique of
Zhang et al. (2011) and performed retrospective
adjustments to the MQPEs to match calendar
month total precipitation derived from rain gauge
reports through PRISM-based interpolation (Daly
et al., 1994).

In our work, the mean areal precipitation (MAP)
time series were computed from the adjusted
MQPEs and the SCaMPR SPEs for 22
catchments in the forecast domains of WGRFC for
the period of 2000-7. The hourly MAP series were
aggregated into 3- and 6-h intervals. For each of
the MAP time series, the eight largest amounts
were picked to form a partial duration time series
(PDS) which served as the basis for deriving the
PFEs.

2.3 Deriving Precipitation Frequency Estimates
The PFEs were derived by assuming that they
follow the Generalized Extreme Value (GEV)

distribution.  The cumulative density function
(CDF) of GEV takes the following form:
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where x is the precipitation amount, and &, a, and
k are location, scale, and shape parameters,
respectively.

The precipitation amount corresponding to a given
exceedance probability is

x=F7 ()
1-p

where pis the AEP. Note p=0.5 for a 2-year return
event.

The GEV parameters were estimated for each
MAP series by applying the L-moment method to
the PDS. L-moment (Hosking, 1990) is a method
widely used in the precipitation frequency literature
and it has been shown to perform well for small
sample sizes. For GEV, the first three L-moments
are
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Where () is the CDF of the gamma distribution.
The sample L-moments (computed from the PDS)
were used to compute the GEV parameters, and
the resultant GEV distributions were applied to
derive the PFEs.

3. RESULTS
3.1 Comparison of PFEs

The 2-Year PFEs derived from SCaMPR SPE
and adjusted MQPEs on 1, 3 and 6-h intervals are
shown in Figure 2 for each catchment.

The comparisons reveal a substantial low bias
in the 1-h SPE-based PFEs relative to those
based on MQPEs, and a tendency for the bias to
improve towards longer time intervals. The
correlation between the SPE and MQPEs,
computed by Ilumping values from multiple
catchments, was high for 1-h PFEs and lower for
the longer time intervals. At the 1-h interval, the
correlation is 0.85 and the percentage bias (PB) is
24% (PB is defined as the ratio of the difference to
the PFEs based on MQPE); for the 6-h PFEs, the



correlation dropped to 0.50 whereas bias is nearly
neutral (0.3%). While an earlier study by Zhang et
al. (2010) points to the overall positive bias in the
SCaMPR SPE relative to MQPEs, it is clear that,
from a distribution standpoint, the 1-h SCaMPR
SPE-based MAP underrepresents large
precipitation amounts as observed in MQPE.
Meanwhile, it also appears that the
underestimation is quite consistent among
catchments at the 1-h interval so that a high
degree of correlation is achieved despite the bias.
At longer intervals, the underestimation on the
average becomes less severe. In fact the PFEs
from SCaMPR SPEs are equal to or exceed those
from MQPEs for several catchments, and the
number of these basins are higher at 6-h than at
3-h. Yet at these intervals, the differences in
PFEs from SPEs and MQPEs become a lot larger
across basins, leading to lower correlation.

The geographic distribution of the PFEs is
illustrated in Figure 4, where the 3-h results from
SPE and MQPE are shown. On an overall basis,
the two sets of PFEs show visible resemblance.
However, it is evident that the PFEs from SPE are
not able to replicate some small-scale spatial
variations as seen over the basins clustered along
the Texas-Louisiana border.

3.2 Dependence of estimated PFE on
estimated mean annual rainfall

The relationship between PFEs and annual
precipitation amounts is characterized in Figure 4,
where PFEs from SPE and MQPEs are plotted
against the mean annual precipitation based on
the respective data set over the 8-year period.
Overall both sets of PFEs are significantly
correlated with the precipitation amounts.
Between the two, the correlation values are mostly
higher for MQPEs. Another notable observation is
that, for MQPEs, correlation tends to improve
towards longer time intervals (from 0.65 at 1-h to
0.69 at 3-h and 0.70 at 6-h). Such a feature is not
observed for SPE, for which the correlation is
rather high at 3-h (0.70) but is much lower for 1
and 6-h (0.52 and 0.54, respectively).

The fact the PFEs and the precipitation totals
are correlated points to the potential of improving
the SPE-based PFEs via bias correction of SPE.
However, SCaMPR SPE, as shown in the study by
Zhang et al. (2010), is subject to a positive overall
bias. It is likely that a simple bias correction would
further lower the PFEs on an overall basis while
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improving the across-basin consistency against
PFEs from MQPE. Therefore a more
sophisticated adjustment of the entire PDF might
be warranted.

3.3 The Detection Experiment

A detection experiment was carried out to
examine SPE skill in detecting heavy precipitation
episodes, by coupling SPE with SPE-based PFEs.
In this experiment, both SPE and MQPE values
were compared with their respective PFEs to
identify the events, i.e., the time intervals where
the PFE was exceeded. Note that a time window
three times the length of the accumulation period
was allowed in determining successful detection
by SPE. For example, a 1-h event at 1000UTC on
July 1, 2004 was determined using MQPE. A
successful detection was registered if a SPE
rainfall event occurred anywhere between 0900
and 1100UTC. Table 1 shows the number of
events as derived from MQPE and the number
among which that were successfully detected
using SPE for each basin.

On a multi-basin average basis, the detection
rate is low. At 1-h, only 9 out of 92 events were
correctly identified using SPE. The rate improves
only slightly at 3 and 6-h intervals, where 10 out of
89 (3-h) and 92 (6-h) were identified. Out of the 22
catchments, successful detection of at least one
event was observed in 8 catchments regardless of
time intervals. Only in one catchment, RPIL1,
were a majority of events detected at 3-h and 6-h
intervals (3 out of 5). The 3-h MQPE and
SCaMPR-based MAP series for RPIL1 and the
identified events are shown in Figure 5. A closer
examination reveals that three of the events
identified using MQPE were clustered between
June 16 and 17 of 2006. Two of the three events
were successfully detected using SCaMPR SPE.

4. SUMMARY
CONCLUSIONS

AND PRELIMINARY

We experimented with using SCaMPR SPE
for deriving Precipitation Frequency Estimates
(PFEs) to aid the detection of storms with flooding
potential in areas with poor radar and rain gauge
coverage. In our study, two sets of PFEs were
computed for 22 WGRFC catchments from 1-h,
3-h and 6-h Mean Areal Precipitation (MAP) series
based on SCaMPR SPE and Multi-sensor QPE.
Comparisons between the SPE and MQPE-based



PFEs for 2-Year AEP reveal a close correlation
between the two sets of values, and a negative
bias of the former at 1-h interval. For 3- and 6-h
accumulations, the bias diminishes but the
correlation also drops. Since SCaMPR SPE
exhibits a positive overall bias, simple bias
correction is unlikely to improve the bias of PFEs
at 1-h and more research on correcting conditional
bias is needed in this respect. It was also found
that PFEs closely correlate with mean annual
precipitation amounts. This implies a potential of
improving the cross-basin consistency in PFEs by
performing climatologic adjustments of MAPs.

In the detection experiment, SCaMPR SPE
and MQPE were coupled with corresponding
PFEs to delineate the heavy precipitation events
where the 1, 3, and 6-h precipitation amounts
exceed the respective PFEs. Our analyses
indicate that detection rate remains low for
SCaMPR SPE (around 10% for all three time
scales), pointing to the need for further
improvements in SPE algorithm in order to
properly represent the relatively rare storm events.

Our results are promising but more work
needs to be done to improve the accuracy of
satellite-based PFEs and to extract the maximum
value from satellite-based PFEs when deriving
multi-sensor PFEs. While large discrepancies
remain between the heavy precipitation events as
represented by SPE versus those by MQPEs, it
appears that the availability of a reference set of
areal-average PFEs would be a useful aid in
interpreting the significance of unusually large
SPE-indicated accumulations. It should be noted
that, due to the short duration of the record, there
is substantial uncertainty with respect to the PFEs
from the SPEs and the MQPEs. Additional studies
are underway to quantify the uncertainty. In
addition, it needs to be noted that the PFEs can
differ substantially from those documented in Atlas
14, and their use should be restricted to the storm
detection application as illustrated in this paper.
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Table 1. The Detection of Precipitation Events at 1, 3 and 6-h intervals by SCaMPR SPE

1-h 3-h 6-h
Size

Catchment (km?) Total'  Success’ Total Success Total  Success

QLAT2 218 5 1 5 1 3 1
GNVT2 266 4 0 4 0 5 0
SDAT?2 326 3 0 3 0 4 0
RSRT2 417 4 0 6 0 4 0
MCKT2 439 5 0 3 0 5 0
MTPT2 447 4 1 3 0 4 0
LYNT2 519 4 0 5 0 3 0
SKMT?2 611 4 0 3 0 5 0
CRKT2 650 4 0 4 0 3 0
SOLT2 678 4 2 4 0 4 0
BRVT2 814 4 0 3 1 4 1
MDST?2 868 5 0 4 0 4 0
SBMT2 919 3 0 5 1 4 1
RPIL1 932 5 1 5 3 4 3
SCDT2 935 3 0 3 0 5 0
BWRT2 988 4 0 4 1 4 1
DWYT2 993 4 0 3 1 4 1
TDDT2 1107 4 2 5 1 5 1
ATBT2 1262 5 1 4 1 6 1
LOLT2 1492 5 0 4 0 4 0
REFT2 1795 4 1 4 0 5 0
UVAT?2 1975 5 0 5 0 3 0
Total 92 9 89 10 92 10

1 Total number of events identified based on MQPE.
2 The number of events successfully detected by SCaMPR out of those identified by MQPE.
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Figure 1: 22 study catchments in West Gulf River Forecast Center (WGRFC) domain.
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Figure 2: Precipitation Frequency Estimates (PFEs) computed using MQPE and SCaMPR SPE at 1, 3,

and 6-h scales.



Figure 3: 3-h Precipitation Frequency Estimates (PFEs) for 0.5 AEP based on a) WGRFC MQPE, and b)

SCaMPR SPE.
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Figure 4. Comparisons of MQPE and SPE-based PFE associated with 0.5 AEP versus mean annual
precipitation from PRISM for a) 1-h, b) 3-h, and c) 6-h intervals. Superimposed are correlation values for
MQPE (m) and SCaMPR SPE (s).
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Figure 5: Events where 3-h precipitation exceeds the PFEs corresponding to the 0.5 AEP as depicted by
a) MQPE and b) SCaMPR SPE for catchment RPIL1. Note that three events are clustered in June 2007
in a). Two of the three events were successfully detected using SCaMPR SPE.
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