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1.  INTRODUCTION 
 
 Flash flood monitoring and prediction (FFMP) 
is one of the key functions of NOAA’s National 
Weather Service (NWS).  At present, FFMP is 
commonly based on radar/rain gauge multi-sensor 
quantitative precipitation estimates (QPEs).  In 
areas outside of effective radar coverage or with a 
sparse rain gauge network, satellite precipitation 
estimates (SPEs) can supplement ground-sensor 
based QPEs for FFMP (Kondragunta et al., 2005).  
There are two potential roles of SPEs in this 
respect.  The first is to serve as a basis for 
determining the rainfall climatology in areas with 
poor radar/rain gauge coverage, and the second is 
to detect in real time the heavy precipitation 
events with high flooding potential in conjunction 
with the SPE-based rainfall climatology.  An 
element of rainfall climatology that is particularly 
useful for this purpose is the precipitation amount 
with the Annual Exceedance Probability (AEP) of 
0.5 – bank-full flow has an AEP of roughly 0.5 
(Reed et al. 2007).  Although gridded estimates of 
precipitation frequency are available for a large 
portion of the U.S. from NOAA Atlas 14 (Bonnin et 
al., 2006) and its various volumes, the availability 
of the SPE values corresponding to 0.5 AEP is still 
valuable in that SPE may suffer from bias (Zhang 
et al., 2010) and this bias can be offset by using 
SPE-based PFEs in the same manner as in 
Distributed Hydrologic Model – Threshold 
Frequency (DHM-TF) approach (Reed et al. 
2007).  Therefore, SPE-based PFEs would 
provide a good context for judging the flooding 
potential of storms as seen from the satellites 
(Personal communication, Sheldon Kusselson at 
National Environmental Satellite, Data and 
Information Service, Satellite Analysis Branch). 
 
     To date, there is a body of literature on climate 
applications of SPE (e.g., Ferraro 1997, Xie and 
Arkin, 1995).  Yet, few of the studies used SPE as 
the basis for deriving PFEs.  Our study fills this 
gap by exploring the use of SPE for deriving the 
PFEs that could be used as thresholds for 

detecting large rainfall amounts with substantial 
flash flood potentials.  We designed an experiment 
and performed it in two phases over 22 
catchments in Texas and Louisiana (Fig. 1) with 
size range from 218 to around 1975 km

2 
(Table 1).  

The first phase entailed deriving two sets of PFEs 
using the mean areal precipitation (MAP) time 
series for each catchment, with the first based on 
the SPE produced using the Self-calibrating 
Multivariate Precipitation Retrieval (SCaMPR) 
algorithm and the second on West Gulf River 
Forecast Center (WGRFC) multisensor QPE 
(MQPE).  The latter were then used as the 
reference to assess the accuracy in the former.  In 
the second phase, the two sets of PFEs were 
used as thresholds in conjunction with respective 
QPEs to identify the events, i.e., instances where 
these thresholds were exceeded for respective 
QPEs.  The events derived from SCaMPR SPE 
were compared with those from MQPE to examine 
the potential skill of SCaMPR for flash flood 
applications. 
       
 
2. DATA AND METHODOLOGY 
 
2.1 SCaMPR and Multi-sensor QPE 
 
 The SCaMPR algorithm was developed by 
Kuligowski (2002) in recognition of the 
shortcomings in algorithms solely based on GOES 
infrared brightness temperature (Tb). The 
SCaMPR algorithm has been scheduled by NOAA 
National Environmental Satellite, Data and 
Information Service (NESDIS) to replace the 
Hydro-Estimator (H-E) as the operational SPE 
algorithm.  The SCaMPR framework still relies on 
Tb in three GOES infrared channels (6.9, 10.7 and 
12.0 or 13.3 μm) as predictors of rain rates, but 
uses recent passive microwave (PMW) SPEs from 
Low Earth Orbital and Polar Orbiting Satellites, as 
well as those from the Tropical Rainfall Measuring 
Mission (TRMM; Kummerow et al., 1998) as a 
reference for calibrating the Tb to rain rate 
relationship. The calibration process involves first 
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using TRMM Precipitation Radar QPE to bias-
correct the PMW QPEs from the TRMM 
Microwave Imager, and those from the Advanced 
Microwave Sounding Unit (AMSU) and Special 
Sensor Microwave Imager (SSM/I).  The adjusted 
PWM QPEs then were used as predicators to 
calibrate the Tb to rainfall relationship via 
discriminant analysis and multiple regression.  
 
 Our reference for assessing the SCaMPR 
SPE is the multi-sensor QPEs from the NWS West 
Gulf River Forecast Center (WGRFC).  The 
MQPEs are hourly gridded precipitation amounts 
on the Hydrologic Rainfall Analysis Project 
(HRAP) grid mesh (approx. 4km in dimension).  
This data set was created using primarily rain 
gauge and radar observations, and it incorporates 
extensive manual quality control.  Although MQPE 
has been shown to be highly reliable for hydrologic 
forecasting, past studies suggest that it is subject 
to temporally varying bias (Zhang et al., 2011).  To 
address this issue, we followed the technique of 
Zhang et al. (2011) and performed retrospective 
adjustments to the MQPEs to match calendar 
month total precipitation derived from rain gauge 
reports through PRISM-based interpolation (Daly 
et al., 1994).   
 
     In our work, the mean areal precipitation (MAP) 
time series were computed from the adjusted 
MQPEs and the SCaMPR SPEs for 22 
catchments in the forecast domains of WGRFC for 
the period of 2000-7.  The hourly MAP series were 
aggregated into 3- and 6-h intervals.  For each of 
the MAP time series, the eight largest amounts 
were picked to form a partial duration time series 
(PDS) which served as the basis for deriving the 
PFEs. 
 
 
2.3 Deriving Precipitation Frequency Estimates   
 
      The PFEs were derived by assuming that they 
follow the Generalized Extreme Value (GEV) 
distribution.  The cumulative density function 
(CDF) of GEV takes the following form: 
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where x is the precipitation amount, and ξ, α, and 
k are location, scale, and shape parameters, 
respectively.  
 
The precipitation amount corresponding to a given 
exceedance probability is  
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where p is the AEP.  Note p=0.5 for a 2-year return 
event. 
 
 The GEV parameters were estimated for each 
MAP series by applying the L-moment method to 
the PDS. L-moment (Hosking, 1990) is a method 
widely used in the precipitation frequency literature 
and it has been shown to perform well for small 
sample sizes.  For GEV, the first three L-moments 
are  
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Where Γ() is the CDF of the gamma distribution. 
The sample L-moments (computed from the PDS) 
were used to compute the GEV parameters, and 
the resultant GEV distributions were applied to 
derive the PFEs. 
 
 
3.  RESULTS 
 
3.1 Comparison of PFEs   
 
 The 2-Year PFEs derived from SCaMPR SPE 
and adjusted MQPEs on 1, 3 and 6-h intervals are 
shown in Figure 2 for each catchment.    
 
 The comparisons reveal a substantial low bias  
in the 1-h SPE-based PFEs relative to those 
based on MQPEs, and a tendency for the bias to 
improve towards longer time intervals.  The 
correlation between the SPE and MQPEs, 
computed by lumping values from multiple 
catchments, was high for 1-h PFEs and lower for 
the longer time intervals.  At the 1-h interval, the 
correlation is 0.85 and the percentage bias (PB) is 
24% (PB is defined as the ratio of the difference to 
the PFEs based on MQPE); for the 6-h PFEs, the 
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correlation dropped to 0.50 whereas bias is nearly 
neutral (0.3%).  While an earlier study by Zhang et 
al. (2010) points to the overall positive bias in the 
SCaMPR SPE relative to MQPEs, it is clear that, 
from a distribution standpoint, the 1-h SCaMPR 
SPE-based MAP underrepresents large 
precipitation amounts as observed in MQPE.  
Meanwhile, it also appears that the 
underestimation is quite consistent among 
catchments at the 1-h interval so that a high 
degree of correlation is achieved despite the bias.  
At longer intervals, the underestimation on the 
average becomes less severe.  In fact the PFEs 
from SCaMPR SPEs are equal to or exceed those 
from MQPEs for several catchments, and the 
number of these basins are higher at 6-h than at 
3-h.  Yet at these intervals, the differences in 
PFEs from SPEs and MQPEs become a lot larger 
across basins, leading to lower correlation. 
  
  The geographic distribution of the PFEs is 
illustrated in Figure 4, where the 3-h results from 
SPE and MQPE are shown.  On an overall basis, 
the two sets of PFEs show visible resemblance.  
However, it is evident that the PFEs from SPE are 
not able to replicate some small-scale spatial 
variations as seen over the basins clustered along 
the Texas-Louisiana border. 
 
 
3.2 Dependence of estimated PFE on 
estimated mean annual rainfall 
 
 The relationship between PFEs and annual 
precipitation amounts is characterized in Figure 4, 
where PFEs from SPE and MQPEs are plotted 
against the mean annual precipitation based on 
the respective data set over the 8-year period.  
Overall both sets of PFEs are significantly 
correlated with the precipitation amounts.  
Between the two, the correlation values are mostly 
higher for MQPEs.  Another notable observation is 
that, for MQPEs, correlation tends to improve 
towards longer time intervals (from 0.65 at 1-h to 
0.69 at 3-h and 0.70 at 6-h).  Such a feature is not 
observed for SPE, for which the correlation is 
rather high at 3-h (0.70) but is much lower for 1 
and 6-h (0.52 and 0.54, respectively).   
 
      The fact the PFEs and the precipitation totals 
are correlated points to the potential of improving 
the SPE-based PFEs via bias correction of SPE. 
However, SCaMPR SPE, as shown in the study by 
Zhang et al. (2010), is subject to a positive overall 
bias.  It is likely that a simple bias correction would 
further lower the PFEs on an overall basis while 

improving the across-basin consistency against 
PFEs from MQPE.  Therefore a more 
sophisticated adjustment of the entire PDF might 
be warranted. 
  
 
3.3 The Detection Experiment 
 
  A detection experiment was carried out to 
examine SPE skill in detecting heavy precipitation 
episodes, by coupling SPE with SPE-based PFEs.  
In this experiment, both SPE and MQPE values 
were compared with their respective PFEs to 
identify the events, i.e., the time intervals where 
the PFE was exceeded.  Note that a time window 
three times the length of the accumulation period 
was allowed in determining successful detection 
by SPE.  For example, a 1-h event at 1000UTC on 
July 1, 2004 was determined using MQPE.  A 
successful detection was registered if a SPE 
rainfall event occurred anywhere between 0900 
and 1100UTC.  Table 1 shows the number of 
events as derived from MQPE and the number 
among which that were successfully detected 
using SPE for each basin.   
 
 On a multi-basin average basis, the detection 
rate is low.  At 1-h, only 9 out of 92 events were 
correctly identified using SPE.  The rate improves 
only slightly at 3 and 6-h intervals, where 10 out of 
89 (3-h) and 92 (6-h) were identified. Out of the 22 
catchments, successful detection of at least one 
event was observed in 8 catchments regardless of 
time intervals.  Only in one catchment, RPIL1, 
were a majority of events detected at 3-h and 6-h 
intervals (3 out of 5).  The 3-h MQPE and 
SCaMPR-based MAP series for RPIL1 and the 
identified events are shown in Figure 5.  A closer 
examination reveals that three of the events 
identified using MQPE were clustered between 
June 16 and 17 of 2006.  Two of the three events 
were successfully detected using SCaMPR SPE.    
   
 
4. SUMMARY AND PRELIMINARY 
CONCLUSIONS 
 
 We experimented with using SCaMPR SPE 
for deriving Precipitation Frequency Estimates 
(PFEs) to aid the detection of storms with flooding 
potential in areas with poor radar and rain gauge 
coverage.  In our study, two sets of PFEs were 
computed for 22 WGRFC catchments from 1-h, 
3-h and 6-h Mean Areal Precipitation (MAP) series 
based on SCaMPR SPE and Multi-sensor QPE.  
Comparisons between the SPE and MQPE-based 
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PFEs for 2-Year AEP reveal a close correlation 
between the two sets of values, and a negative 
bias of the former at 1-h interval.  For 3- and 6-h 
accumulations, the bias diminishes but the 
correlation also drops.  Since SCaMPR SPE 
exhibits a positive overall bias, simple bias 
correction is unlikely to improve the bias of PFEs 
at 1-h and more research on correcting conditional 
bias is needed in this respect.  It was also found 
that PFEs closely correlate with mean annual 
precipitation amounts.  This implies a potential of 
improving the cross-basin consistency in PFEs by 
performing climatologic adjustments of MAPs.   
 
 In the detection experiment, SCaMPR SPE 
and MQPE were coupled with corresponding 
PFEs to delineate the heavy precipitation events 
where the 1, 3, and 6-h precipitation amounts 
exceed the respective PFEs.  Our analyses 
indicate that detection rate remains low for 
SCaMPR SPE (around 10% for all three time 
scales), pointing to the need for further 
improvements in SPE algorithm in order to 
properly represent the relatively rare storm events.  
 
 Our results are promising but more work 
needs to be done to improve the accuracy of 
satellite-based PFEs and to extract the maximum 
value from satellite-based PFEs when deriving 
multi-sensor PFEs.  While large discrepancies 
remain between the heavy precipitation events as 
represented by SPE versus those by MQPEs, it 
appears that the availability of a reference set of 
areal-average PFEs would be a useful aid in 
interpreting the significance of unusually large 
SPE-indicated accumulations.  It should be noted 
that, due to the short duration of the record, there 
is substantial uncertainty with respect to the PFEs 
from the SPEs and the MQPEs.  Additional studies 
are underway to quantify the uncertainty.  In 
addition, it needs to be noted that the PFEs can 
differ substantially from those documented in Atlas 
14, and their use should be restricted to the storm 
detection application as illustrated in this paper.  
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Table 1. The Detection of Precipitation Events at 1, 3 and 6-h intervals by SCaMPR SPE 
 

             1-h                 3-h                6-h 

Catchment 
Size 
(km2) 

     
Total1 Success2         Total    Success         Total    Success 

QLAT2 218 5 1 5 1 3 1 

GNVT2 266 4 0 4 0 5 0 

SDAT2 326 3 0 3 0 4 0 

RSRT2 417 4 0 6 0 4 0 

MCKT2 439 5 0 3 0 5 0 

MTPT2 447 4 1 3 0 4 0 

LYNT2 519 4 0 5 0 3 0 

SKMT2 611 4 0 3 0 5 0 

CRKT2 650 4 0 4 0 3 0 

SOLT2 678 4 2 4 0 4 0 

BRVT2 814 4 0 3 1 4 1 

MDST2 868 5 0 4 0 4 0 

SBMT2 919 3 0 5 1 4 1 

RPIL1 932 5 1 5 3 4 3 

SCDT2 935 3 0 3 0 5 0 

BWRT2 988 4 0 4 1 4 1 

DWYT2 993 4 0 3 1 4 1 

TDDT2 1107 4 2 5 1 5 1 

ATBT2 1262 5 1 4 1 6 1 

LOLT2 1492 5 0 4 0 4 0 

REFT2 1795 4 1 4 0 5 0 

UVAT2 1975 5 0 5 0 3 0 

Total            92              9 89 10 92 10 
 

1 Total number of events identified based on MQPE. 
2 The number of events successfully detected by SCaMPR out of those identified by MQPE. 
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Figure 1: 22 study catchments in West Gulf River Forecast Center (WGRFC) domain. 
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Figure 2: Precipitation Frequency Estimates (PFEs) computed using MQPE and SCaMPR SPE at 1, 3, 
and 6-h scales.     
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Figure 3:  3-h Precipitation Frequency Estimates (PFEs) for 0.5 AEP based on a) WGRFC MQPE, and b) 
SCaMPR SPE.   
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Figure 4: Comparisons of MQPE and SPE-based PFE associated with 0.5 AEP versus mean annual 
precipitation from PRISM for a) 1-h, b) 3-h, and c) 6-h intervals.  Superimposed are correlation values for 
MQPE (m) and SCaMPR SPE (s).  
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Figure 5: Events where 3-h precipitation exceeds the PFEs corresponding to the 0.5 AEP as depicted by 
a) MQPE and b) SCaMPR SPE for catchment RPIL1.  Note that three events are clustered in June 2007 
in a). Two of the three events were successfully detected using SCaMPR SPE.   

 


