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1. INTRODUCTION 
 

Understanding of regional distribution of extreme 
precipitation events as a response to global warming is 
a subject of active research as suggested in IPCC-4. 
Studies on secular trend of precipitation are well 
documented (e.g., Groisman et al. 2001), but those 
studies adopted spatial averaging so that results of 
extreme  precipitation trend are relatively on coarse 
domain to depict extreme precipitation in finer scale. 
What makes extreme precipitation trend study difficult 
is the criterion on extreme precipitation. Groisman et al. 
(2001) analyzed frequencies of heavy rain climatology 
with three definitions of heavy rain event. The first is an 
event of daily precipitation which exceed threshold of 2 
inches (heavy) and 4 inches (very heavy). The second 
is in terms of percentiles of precipitation days through 
the year, 90% (heavy) and 99% (very heavy). The third 
is in terms of return period of event, 1-year return 
period (heavy) and 20-year (very heavy).  

National Weather Service (NWS) is in the process 
of establishing operational frequency database to 
provide users a precipitation amount (depth) given 
precipitation duration and average recurrence interval 
at any geographic location of Conterminous United 
States (Bonnin et al. 2006) as NOAA Atlas 14. The 
database is outcome of rigorous quality control on 
available daily and sub-daily historical precipitation 
data, and various statistical tests (e.g., heterogeneity 
test).  Unfortunately, L-moment method (Hoskings and 
Wallis, 1997) used in Atlas 14 cannot consider time-
dependency (“non-stationary”) while some concerns 
have been raised (e.g., DeGaetano, 2009). The main 
purpose of this study is to answer to questions: If there 
is a trend, can we use non-stationary statistical model 
to reliably detect the trend and estimate its magnitude? 
What are the relative strength and weakness of 
extreme value samples to non-stationary model in this 
respect? 

Hence, we engaged in a simulation study of trend 
detection using non-stationary model to both stationary 
and non-stationary data. The non-stationary model will 
estimate trend as zero if data-series is stationary, and 
estimate the prescribed trend if data are non-stationary. 
We opted to use publically available R package “ismev” 
(Coles, 2001) which contain functions that handle time-
dependent covariates. 

 
* Corresponding author address: Dongsoo Kim, 
NOAA/NESDIS/NCDC, 151 Patton Ave, Asheville, NC 
28801; e-mail: dongsoo.kim@noaa.gov 

2.    EXTREME VALUES SAMPLING, GENERALIZED 
EXTREME VALUE (GEV) DISTRIBUTION 
 

Our approach is to fit extreme value samples to a 
generalized extreme value (GEV) distribution. The GEV 
distribution function is described as 
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where µ is a location parameter,  ψ  a scale parameter 

(ψ > 0), ξ a shape parameter. The GEV distribution 
function is defined within the range of x ;  x < µ - 

ψ /ξ , forψ > 0, and x  > µ - ψ /ξ , forψ < 0. See 
Coles (2001) for detail. The shape parameter controls 
skewedness of density of GEV function. The location 
parameter is approximately a median value of the 
sample and the scale parameter is related to spread of 
distribution.  The parameters are estimated by 
maximum likelihood method because of its ability to 
estimate time-dependent covariate as recommended 
by Katz et al. (2002). 

One of commonly used extreme value sampling is 
to pick the highest value per year, hence it generate 
annual maximum series (AMS) whose sample size is 
identical with the number of years (Ny). It does not 
include all extreme values because any second highest 
would be dropped out of Ny samples regardless how 
frequent extreme events per year. The other procedure 
is called peaks-over-threshold (POT). With this 
approach, we chose a threshold value as top 99 
percentile and treat observation above the threshold as 
extreme values.  DeGaetano (2009) used partial 
duration series (PDS) whose sample size is Ny, 
namely, a subset of POT. We must note both POT and 
PDS may have multiple extremes in a year which 
create uncertainties in extreme value modeling as 
reported by Begueria (2005). Hence, we adopted point 
process approach which handles multiple extreme 
values per year after Smith (1989). We are interested in 
assessing the ability of maximum likelihood method of 
parameter estimation to AMS and POT whose 
threshold is determined by top 99 percentile to both 
stationary and non-stationary time-series with known 
trend. During the course of experiments with long-term 
daily rainfall time-series, we found the top 99 percentile 
value was in the proximity of 2 inches. Other possibility 
is to look at stability of standard errors of maximum 
likelihood estimates by various threshold value as 
briefly discussed in the Section 3. 
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Figure 1 Daily precipitation time-series of COOP 
station (380972) during 1949-2008 (a), resampled time-
series to assure stationarity (b), time-series with added 
linear trend of 0.01 inch/year (c). Numbers of extreme 
values exceeding threshold value (upper 99 percentile) 
are marked by season; red by warm season (Apr. – 
Sep.) and blue by cool season. Horizontal line locates 
threshold value used in this example. 
 
3.    EXPERIMENTAL SETUP 
 

Step 1. We generate a stationary 60-yr daily 
rainfall time-series by re-sampling from an existing 
COOP station during 1949 – 2008. In each realization 
after resampling, stationarity is tested. If linear trend of 
occurrence of extremes values is significant, we repeat 
the resampling until stationarity is assured. Figure 1a is 
the original time-series of daily precipitation of COOP 
station at 380972 (Branchville, South Carolina). Figure 
1b is resampled time-series. Missing values are set to 
zero to make it complete series of size 21915. 

Step 2. We apply a prescribed trend of 0.01 in/year 
such that beginning day has 0.3 inch less than 
stationary time-series and ending day has 0.3 inch 
more. Any negative value as addition of trend is forced 
to zero. Figure 1c is time-series with trend. 

Step 3. We create a series of missing values 
based on randomized binomial distribution with 
probability 0.85 so that 15% of samples are encoded as 
missing values to the outputs of Step 1 and 2. 

Step 4. We generate four AMS corresponding to 
four data-series in Step 1-3, namely stationary time-
series of complete record and with 15% missing values, 
and non-stationary time-series of complete record and 
with 15% missing values.  

Step 5. We generate four POT series by using 99 
percentile as a threshold value. 

Step 6. We apply maximum likelihood estimate of 
three GEV parameters to both AMS and POT series. 
The maximum likelihood estimation is a numerical 
method that maximized negative log likelihood function, 
so there may exist multiple maxima or instability that 
numerical solution converges away from true solution.  
Figure 2 exemplifies sensitivity of maximum likelihood 
estimation to increased threshold value of one of 
stationary realizations.  

 

 
 Figure 2 A bias-variance trade-off diagram of three 
GEV parameters estimated by maximum likelihood 
method for visual inspection of stability with respect to 
threshold values (x-axis). Three parameters, location 
(a), scale (b) and shape(c) become unstable as 
threshold value increases. Vertical bars are +/- one 
standard error. 
 

Step 7. We repeat Step 3-6 with non-stationary 
model linear trend covariate to location parameter only; 

 
µ (t) = µ o + β t,   (2) 

where β   is a trend in location parameter, and t is a 
covariate linear in time from 1949 – 2008.  

 



Therefore, in each realization, we obtained 4 GEV 
parameters (location, trend in location, scale and 
shape) in 16 combinations. Sixteen combinations are 
from two-level factor in sampling method, data series, 
completeness, and GEV model. Sampling method 
factors are AMS vs POT. Data series are stationarity vs 
non-stationarity. Completeness factor is non-missing 
observations vs 15% missing values. GEV model factor 
is stationary model vs non-stationary model with time-
dependent covariate.  We repeated 1000 times above 
Step 1-7 with a new re-sampling procedure. 

 
4.    RESULTS 
 

Among 4 GEV parameters, we focus the result of 
1000 realization of trend in location parameter with 
non-stationary GEV model.  

 
a.  Non-stationary GEV modeling  

Figure 3 show results of 8 estimated trend 
parameters by applying non-stationary GEV model with 
time dependent covariate on location parameter (see 
Eq. 2). The experiment is to assess the use of non-
stationary GEV model regardless of data-series is 
stationary or not. Figure 4 is box plot of the same 
estimates used in Figure 3. Some observations are 
made;  

• The frequency of estimated trend with POT series is 
much narrower than those of AMS, namely, 
confidence on maximum likelihood estimate from 
POT samples higher than that from AMS. Larger 
sample size in POT than AMS is attributed to this 
result. 

 
Figure 3 Histograms of trend estimates from 1000 
realizations (red lines for AMS, dark bars are for POT, 
and x-axis is trend in rain rate in inch/year). Left panels 
are results of maximum likelihood estimate of trend to 
stationary time-series. Right panels are trend estimate 
with non-stationary time-series. Top panels are with 
complete data set, bottom panels are results with 15% 
of missing observations. The rain-rate (x-axis) is 
truncated to capture main feature, but outliers are 
shown in Figure 4. 

 
Figure 4 Box-plot display of four cases which 
correspond to Figure 3, vertical axis stands for trend of 
location parameter (inch/year). Large number of 
outliers of trend estimate by ML method in POT series 
is observed in comparison with those of AMS. 
 

• But, estimates from POT series display secondary 
peaks far off the correct value, zero for stationary 
data and 0.01 for non-stationary data.  We speculate 
the cause of this is related to numerical optimization 
routine and initial values in maximizing likelihood 
function.  

• None of estimated trend values with POT series are 
negative in either complete series or with missing 
values (see case b and d).  

• The 15% missing values with random occurrence 
are not negatively affecting in trend estimate with 
non-stationary GEV model.  

 
 
b.  Comparative metric of trend estimate 
 

 We computed median and inter-quartile range of 
trend estimates corresponding to Figure 3. Table 1 is 2 
x 2 table of metric as results of stationary data 
corresponding to cases a) and c) in Figure 3 and 4, 
table 2 is from non-stationary data which corresponds 
to cases b) and d) in Figure 3 and 4. Unit is in 
inch/year.  Table 3 is metrics of trend estimates from 
POT which are outside of estimates from AMS.  
 
Table 1. Medians and inter-quartile ranges of trend 
estimates from GEV model fit to stationary data-series. 
Inter-quartile range values are in the parentheses. Unit 
is in inch/year.   
 

 Complete Incomplete 
AMS 0.0015 

(0.0089) 
0.00115 

(0.00839) 



POT 0.00156 
(0.00526) 

0.00033 
(0.00407) 

 
 
Table 2. Medians and inter-quartile ranges of trend 
estimates from GEV model fit to non-stationary data-
series. Inter-quartile range values are in the 
parentheses. Unit is in inch/year.   
 

 Complete Incomplete 
AMS 0.01151 

(0.00893) 
0.01117 

(0.00836) 
POT 0.01252 

(0.00474) 
0.01121 

(0.00537) 
 
 
Table 3. Medians and inter-quartile ranges of trimmed 
trend estimates of POT. Trimmed estimates are outside 
of boundaries of AMS estimates. First row indicates 
percentage of trimmed estimates from POT. 
 

 Complete Incomplete 
Trimmed (%) 12.3 1.8 
Stationary 0.00081 

(0.003995) 
0.0003 

(0.00389) 
Non-
stationary 

0.0122 
(0.004055) 

0.011125 
(0.0052825) 

 
 
 
5.     SUMMARY AND FUTURE WORKS 

 
The experiment presented here is a series of 

“simple” tests to detect trend estimation of extreme 
rainfall in long-term time-series. This requires a method 
which can include time-dependent covariate in the GEV 
modeling, namely, non-stationary GEV model. We have 
chosen point process approach which fits POT samples 
with maximum likelihood method. Hence, direct 
evaluation with L-moment is not in the scope of this 
study.  We stated simple test, because simulated data-
series with linear trend is not a typical non-stationary 
data-series. Also, we decided upper 99 percentile as 
threshold value to avoid definition problem of “extreme” 
precipitation even though estimate critically depend on 
threshold value as well as data record length. Although 
many assumptions are made for simplistic experiment, 
the answer to the question “Can we estimate trend in 
extreme rainfalls?” is yes. The non-stationary GEV 
modeling handles stationary data-series, while 
stationary modeling cannot estimate trend in non-
stationary data-series. We found differential abilities in 
trend detection from AMS and POT, but they are 
complementary as summarized below; 

 
• Estimates from AMS are stable and less sensitive 

to incompleteness and to non-stationarity of data. 
Namely, sizes of four red-colored boxes in Fig. 4 
are almost the same. Such robustness against 

missing values is attributed to lower chance of 
annual maximum being missing value.   

• Estimates from POT series exhibited many outliers 
unfortunately. It is not known that if point process 
approach to POT series is less effective to heavily 
clustered realizations or time-dependent covariate 
is not scaled and centered at mid-point of record 
period.  However, inter-quartile range is much 
narrower than those of AMS as ascertained by 
pairs of boxes (red and white) in Fig 3 and 
compactness of POT histograms in Fig. 4. 

• Trend estimate from AMS can be treated as a prior 
of parameter distribution of POT which constrains 
outliers. 
 
We propose future works that will exploit current 

results, and reflect more realistic situations of real-
world; 

 
1) Test of different types of non-stationary model, 

cyclic or log-linear in time to all parameters within 
the framework of point process representation of 
GEV modeling. 

2) Generate non-random missing values such as 
week-long or month-long missing value series. It is 
highly sensitive to modeling result if any extreme 
value is missed. 

3) Develop a method to restrict outliers of parameters 
from POT series either by de-clustering POT 
series or by bounding parameters from AMS 
series. 

4) Compute n-year return levels with confidence 
intervals similar to Figure 2. 

5) Consider a spatial distribution of trend within a 
homogeneous region identified in NOAA Atlas 14. 
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