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Motivation/questions

Theory 

Model setup

Results: steady state Results: variability

What determines the equilibrium slope of buoyancy 
surfaces in the interior of the Southern Ocean?

How sensitive is the interior buoyancy structure to 
surface wind stress?

Quasi-geostrophic potential vorticity gradient:

∂yq = β + ∂z(f0N
−2∂yb

)

Slope of buoyancy surfaces: 

Buoyancy decomposition:

b = b̃(z) + b(x, y, z, t)

N−2∂yb
 = M2/N2 = ∂yb/∂z b̃ = −sb

N2(z) = ∂z b̃
M2(x, y, z, t) = ∂yb

 = ∂yb

(1)

So equation (1) can be written (zonal and depth mean):

∂yq = β − f0∂zsb = β


1− ∂zsb

β/f0


= β(1− r)

PV homogenization metric: r(y, t) ≡ ∂zsb
β/f0

Under homogenous PV (r=1):

∂sb
∂z


=

β

f0
=

2Ωa−1 cos(φ0)

2Ω sin(φ0)
= a−1 cot(φ0)

The large-scale slope structure is constrained by 
planetary-geometric parameters 
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Fig. 1.  Horizontal strati�cation versus vertical strati�cation 
in an idealized Southern Ocean model.  Each point is 
calculated from a particular longitude/depth across the 
channel. 

The large-scale slope structure is constrained by plan-
etary geometric parameters

The planetary-geometric constraint is most e�ective 
when PV is uniform (r=1)

Stronger wind stress increases eddy activity, which ho-
mogenizes large-scale PV and makes the planetary-
geometric constraint more dynamically relevant

Fig. 3.  Mean value of r (the PV homogenization metric) in 
the circumpolar channel for the control (black, solid) and 
strong wind (blue, dashed) cases. 

Fig. 4.  Hovmöller diagrams (left column) and long-term 
zonal mean (right column) of r for both the weak wind (top 
row) and strong wind (bottom row) cases.  

r>1 strati�cation dominant (negative PV gradient)
r=1 strati�cation/planetary balance (zero PV gradient)
r<1 planetary constraint dominant (positive PV gradient)

Measured slope ~ 4.1 x 10-4

R2 = 0.97

Slope ≈ 4.7× 10−4

Prediction:

Fig. 2. Model geometry with circumpolar channel (left), surface 
wind forcing (middle), and surface temperature pro�le (right).  
The domain has 42 vertical levels and an eddy-permitting 
horizontal resolution (1/6° x 1/6°).
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