Time-Resolving Model for Gravity Waves in Non-Uniformly Stratified Atmosphere

Chen Wei, Oliver Bühler, Esteban G. Tabak
Courant Institute of Mathematical Sciences, New York University

Motivation

Fast information transfer:

\[\rho_0(z) \downarrow \zeta(z) \uparrow \] detect tsunami

- Tsunami-induced gravity wave
- Stationary mountain (tsunami) lee waves in the frame moving with tsunami
- Neglects partial back-reflection in the non-uniformly stratified atmosphere

Modeling

Time-resolving model allowing jump in buoyancy frequency

\[
\begin{align*}
(\psi_t + \Delta U \psi) \zeta + N^2(z) \psi & = 0 \\
\psi(t = 0^-) & = \psi(t = 0^+) = 0 \\
\zeta(z = 0) & = h(x), \zeta(z = \infty) = 0.
\end{align*}
\]

Wave-train approximation

Results

- Exact solution
- Wave-train approximation
- Interpolated wave

Summary

- Develop a time-resolving model while allowing jump in stratification
- Construct a wave-train approximation including reflections and transmissions
- Recover the gravity wave propagation scheme in the middle and low atmosphere