Influence of ENSO on Stratospheric Variability, and the Descent of Stratospheric Perturbations into the Lower Troposphere

Ying Li¹ Ngar-Cheung Lau²

¹Department of Atmospheric Science Colorado State University

²NOAA/GFDL

AOFD Conference, 2013

(日) (四) (코) (코) (코) (코)

990

$\mathsf{ENSO} \to \mathsf{strength}$ of the stratospheric polar vortex

e.g., van Loon and Labitzke 1987; Hamilton 1993; Garcia-Herrera et al. 2006; Garfinkel and Hartmann 2008

Anomalous stratospheric polar vortex ightarrow North Atlantic-European (NAE) climate

e.g., Baldwin and Dunkerton 2001; Sassi et al. 2004; Manzini et al. 2006

- Li, Y. and N.-C. Lau,: Influences of ENSO on stratospheric variability, and descent of stratospheric perturbations into the lower troposphere. *J. Climate*, in press.
- Li, Y. and N.-C. Lau, 2012b: Contributions of downstream eddy development to the teleconnection between ENSO and atmospheric circulation over the North Atlantic. *J. Climate*, 25, 4993–5010.
- Li, Y. and N.-C. Lau, 2012a: Impact of ENSO on the atmospheric variability over the North Atlantic in late winter–Role of transient eddies. *J. Climate*, 25, 320–342.

$\mathsf{ENSO} \to \mathsf{strength}$ of the stratospheric polar vortex

e.g., van Loon and Labitzke 1987; Hamilton 1993; Garcia-Herrera et al. 2006; Garfinkel and Hartmann 2008

Anomalous stratospheric polar vortex \rightarrow North Atlantic-European (NAE) climate

e.g., Baldwin and Dunkerton 2001; Sassi et al. 2004; Manzini et al. 2006

- Li, Y. and N.-C. Lau,: Influences of ENSO on stratospheric variability, and descent of stratospheric perturbations into the lower troposphere. *J. Climate*, in press.
- Li, Y. and N.-C. Lau, 2012b: Contributions of downstream eddy development to the teleconnection between ENSO and atmospheric circulation over the North Atlantic. *J. Climate*, 25, 4993–5010.
- Li, Y. and N.-C. Lau, 2012a: Impact of ENSO on the atmospheric variability over the North Atlantic in late winter–Role of transient eddies. *J. Climate*, 25, 320–342.

$\mathsf{ENSO} \to \mathsf{strength}$ of the stratospheric polar vortex

e.g., van Loon and Labitzke 1987; Hamilton 1993; Garcia-Herrera et al. 2006; Garfinkel and Hartmann 2008

Anomalous stratospheric polar vortex \rightarrow North Atlantic-European (NAE) climate

e.g., Baldwin and Dunkerton 2001; Sassi et al. 2004; Manzini et al. 2006

- Li, Y. and N.-C. Lau,: Influences of ENSO on stratospheric variability, and descent of stratospheric perturbations into the lower troposphere. *J. Climate*, in press.
- Li, Y. and N.-C. Lau, 2012b: Contributions of downstream eddy development to the teleconnection between ENSO and atmospheric circulation over the North Atlantic. *J. Climate*, 25, 4993–5010.
- Li, Y. and N.-C. Lau, 2012a: Impact of ENSO on the atmospheric variability over the North Atlantic in late winter–Role of transient eddies. *J. Climate*, 25, 320–342.

$\mathsf{ENSO} \to \mathsf{strength}$ of the stratospheric polar vortex

e.g., van Loon and Labitzke 1987; Hamilton 1993; Garcia-Herrera et al. 2006; Garfinkel and Hartmann 2008

Anomalous stratospheric polar vortex \rightarrow North Atlantic-European (NAE) climate

e.g., Baldwin and Dunkerton 2001; Sassi et al. 2004; Manzini et al. 2006

- Li, Y. and N.-C. Lau,: Influences of ENSO on stratospheric variability, and descent of stratospheric perturbations into the lower troposphere. *J. Climate*, in press.
- Li, Y. and N.-C. Lau, 2012b: Contributions of downstream eddy development to the teleconnection between ENSO and atmospheric circulation over the North Atlantic. *J. Climate*, 25, 4993–5010.
- Li, Y. and N.-C. Lau, 2012a: Impact of ENSO on the atmospheric variability over the North Atlantic in late winter–Role of transient eddies. *J. Climate*, 25, 320–342.

Data and Diagnostic tool

Data

- GFDL CM3
 - 800-yr pre-industrial control integration
 - atmosphere: 48 layers; model top 0.01 hPa
- ERA-40 Reanalysis (Sep. 1957 Aug. 2002)

Diagnostic tool

- Stationary wave field: $\overline{Z}^* = \overline{Z} [\overline{Z}]$
- EP flux and its divergence:

$$F_{\phi} = -\rho_0 a \cos \phi [v^* u^*], \qquad D_F \equiv \frac{1}{\rho_0 a \cos \varphi} \nabla \cdot \mathbf{F},$$

$$F_z = f \rho_0 a \cos \phi \frac{[v^* \theta^*]}{[\theta]_z}, \qquad \nabla \cdot \mathbf{F} = \frac{1}{a \cos \phi} \frac{\partial}{\partial \phi} (F_{\phi} \cos \phi) + \frac{\partial}{\partial z} (F_z)$$

• Mass streamfunction: $\Psi_M = \frac{2\pi a \cos \phi}{g} \int_0^p [v] dp$

Data and Diagnostic tool

Data

- GFDL CM3
 - 800-yr pre-industrial control integration
 - atmosphere: 48 layers; model top 0.01 hPa
- ERA-40 Reanalysis (Sep. 1957 Aug. 2002)

Diagnostic tool

- Stationary wave field: $\overline{Z}^* = \overline{Z} [\overline{Z}]$
- EP flux and its divergence:

$$\begin{aligned} F_{\phi} &= -\rho_{0}a\cos\phi[v^{*}u^{*}], \qquad D_{F} &\equiv \frac{1}{\rho_{0}a\cos\varphi}\nabla\cdot\mathbf{F}, \\ F_{z} &= f\rho_{0}a\cos\phi\frac{[v^{*}\theta^{*}]}{[\theta]_{z}}, \qquad \nabla\cdot\mathbf{F} &= \frac{1}{a\cos\phi}\frac{\partial}{\partial\phi}\left(F_{\phi}\cos\phi\right) + \frac{\partial}{\partial z}\left(F_{z}\right), \\ \bullet \text{ Mass streamfunction: } \Psi_{M} &= \frac{2\pi a\cos\phi}{g}\int_{0}^{p}[v]dp \end{aligned}$$

Relationship between ENSO and stratospheric vortex anomalies

Identification of anomalous stratospheric polar vortex months

- Definition of Vortex Strength Index (VSI) monthly mean (from Nov to Mar), Z [70°–90°N, 3–30hPa]
- Months of weak (strong) stratospheric vortex: monthly mean VSI > 90th percentile (< 10th percentile) for the cold season (NDJFM)

Relationship between ENSO and freq. of occurrence of weak/strong vortex

number of weak/strong vortex mo.

	weak	strong
El Niño	87	37
La Niña	47	103

Combinations of the ENSO responses and precursors to polar vortex anomalies

Combinations of the ENSO responses and precursors to polar vortex anomalies ("Wavenumber-1" combination)

Combinations of the ENSO responses and precursors to polar vortex anomalies ("Wavenumber-2" combination)

Geopotential height anomaly precursors (Lag = -1 month)

Geopotential height anomaly precursors (Lag = -1 month)

EP-flux Pattern (Lag = 0 month)

arrow: EP flux; contour: D_F

EP-flux Pattern (Lag = 0 month)

arrow: EP flux; contour: D_F

Relationship between wave propagation and zonal-mean meridional circulation (El Niño/Weak Vortex)

- F_{ϕ} bends strongly poleward
- dipolar pattern of eddy momentum flux convergence

590

• two-cell tropospheric overturning circulation

Relationship between wave propagation and zonal-mean meridional circulation (La Niña/Weak Vortex)

- F_{ϕ} refracts away from midlatitude towards both low- and high-latitudes
- tripolar pattern of eddy momentum flux convergence
- three-cell tropospheric overturning circulation

Responses of the zonal-mean zonal wind [U]

Responses of the SLP (Lag=0–2mo)

- Similar poleward part of the positive SLP anomaly is in phase with the weakened strength of the polar vortex
- different pattern of SLP anomaly (dipolar/tripolar) over N. Atl

Summary

- El Niño/Weak vortex month > La Niña/Weak vortex month
- The weak vortex during El Niño (La Niña) are driven by the increased upward propagation of the tropospheric stationary WN-1 (WN-2)
- North of \sim 60°N: $\nabla \cdot \mathbf{F} < 0 \rightarrow U \downarrow$ descend to the lower stratosphere
- South of ~60°N: $F_{\phi} \rightarrow -\frac{\partial}{\partial v} (v^* u^*) \rightarrow \Psi_M \rightarrow [U]$

Summary

- El Niño/Weak vortex month > La Niña/Weak vortex month
- The weak vortex during El Niño (La Niña) are driven by the increased upward propagation of the tropospheric stationary WN-1 (WN-2)
- North of \sim 60°N: $\nabla \cdot \mathbf{F} < 0 \rightarrow U \downarrow$ descend to the lower stratosphere
- South of ~60°N: $F_{\phi} \rightarrow -\frac{\partial}{\partial y} (v^* u^*) \rightarrow \Psi_M \rightarrow [U]$

Summary

- El Niño/Weak vortex month > La Niña/Weak vortex month
- The weak vortex during El Niño (La Niña) are driven by the increased upward propagation of the tropospheric stationary WN-1 (WN-2)
- North of \sim 60°N: $\nabla \cdot \mathbf{F} < 0 \rightarrow U \downarrow$ descend to the lower stratosphere
- South of ~60°N: $F_{\phi} \rightarrow -\frac{\partial}{\partial y} (v^* u^*) \rightarrow \Psi_M \rightarrow [U]$