

A Method to Validate Simulated Mountain Wave Impacts on Hub-Height Wind Speed Using SoDAR Observations

Geng Xia¹, Caroline Draxl¹, Ajay Raghavendra², Julie K. Lunquist^{1,3}

¹National Renewable Energy Laboratory, Golden, CO, USA ²Department of Atmospheric and Environmental Sciences, University at Albany, Albany, NY, USA ³Department of Atmospheric and Oceanic Sciences, University of Colorado Boulder, Boulder, CO, USA

1	Introduction
2	Data and Methodology
3	Results
4	Uncertainty
5	Conclusion
6	
7	

Introduction

The Second Wind Forecast Improvement Project (WFIP2)

- Improve the accuracy of NWP forecasts of wind speed in complex terrain for wind energy applications.
- Columbia basin of eastern Washington and Oregon
- 18 months field campaign (October/2015 to Mar/2017)
- Key weather phenomena: Cold pool, Gap flow and Mountain wave(MW)

Introduction

Draxl et al., (2020)

- Using FFT
- Simulated MWs seems to match well with the observations after 1 hour shift

Future work

- Investigate the ability of mesoscale modeling on simulating MWs by conducting multiple MW simulations
- Quantify the uncertainties

Data and Methodology

Observational Data

- MODIS satellite reflectance (W m–2 μ m–1 sr–1) at 620–670 nm (250-m resolution)
- SoDAR wind speed measurements (Van Glider and Prineville)

Selected MW Cases:

- High significance (Eventlog)
- Two cases (2015/11/11; 2016/02/14), captured by MODIS
- One case (2016/04/04), not captured by MODIS

Data and Methodology

Model configuration (Similar to Draxl et al., 2020)

Physic Options	Scheme
Microphysics	Thompson-Aerosol awareness
Shortwave and Longwave Radiation	RRTM
PBL	YSU
Surface Layer	Revised MM5
LSM	Noah

Simulation Design	Detail
WRF Version	4.2.1
Number of Domain, Resolution	2; 3km, 750m
Forcing	ERAI
Model integration	2.5 days; first 12 hour is treated as spin up

Data and Methodology

Targeted MWs:

- Wavelength : $8 \sim 20$ km (wind farm scale, renewable energy purpose)
- Wave period: $1 \sim 4$ hr (separate from large-scale waves)

Disentangling simulated MW signals from the total wind field using spectral method

- Reconstructed the simulated wind speed using the wavelength constraint.
- Reconstructed the simulated wind speed using the wave period constraint.

Significant MW event

• In this study, a MW event was considered significant when the power variance explained by the targeted wavelength range exceeds 25 % of the total variance for at least 3 hours.

- Qualitatively, the wave activities as well as their geographical locations are well simulated for the 20151111 and 20160214 cases
- No evident wave activities are simulated for 20160404 case

Variance Explained by Wavelength between 8km and 20km

First MW event:

- Nov/11/2015
- 18 UTC to 22 UTC

Second MW event:

- Feb/14/2016
- 21 UTC to 02 UTC the next day

Third MW event:

- Apr/05/2016
- 02 UTC to 09 UTC

Fourth MW event:

- April/05/2016
- 01 UTC to 05 UTC

- About 75 % of the atmospheric variabilities are explained by the large wave patterns
- The simulated MWs from each event differ in terms of wave characteristics
- For wavelengths shorter than 8 km, the associated power variance is small

Trapped lee waves are likely to occur when Scorer Parameter:

- Decreases with height
- Dividing the troposphere into two regions, a lower layer with large values (high stability) and an upper layer with small values (low stability)

The simulated atmospheric conditions throughout the targeted wave periods **are in favor** for trapped lee waves development in all four cases.

- In general, the simulated wave activities match well with the observations in terms of both pattern and magnitude.
- However, there seems to be a time lag in terms of wave activities between the model and observations.

Time Lag Correlation Between Observed and Simulated Hub-Height Wind Speeds From the Four MW Events

	-60m	-50m	-40m	-30m	-20m	-10m	0	+10m	+20m	+30m	+40m	+50m	+60m
VG 2015/11/11	-0.24	-0.48	-0.56	-0.50	-0.33	-0.07	0.25	0.47	0.47	0.30	0.05	-0.21	-0.47
PR 2016/02/14	0.05	-0.24	-0.44	-0.59	-0.63	-0.48	-0.02	0.48	0.74	0.74	0.53	0.17	-0.23
VG 2016/04/04	-0.02	-0.11	-0.18	-0.23	-0.27	-0.31	-0.35	-0.34	-0.24	-0.06	0.13	0.30	0.40
PR 2016/04/04	-0.12	-0.09	0.10	-0.04	-0.52	-0.70	-0.31	0.18	0.34	0.33	0.43	0.47	0.29

- From -1 hr to 0 hr, almost all the correlations are negative
- From 0 hr to 1hr, 75 % of the correlations are positive (bold values are statistically significant)

13

EXP1

• Change the number of vertical layers from 44 to 66

EXP2

• PBL scheme changes from YSU to MYNN

Our result is **not very sensitive** to the choice of PBL scheme and vertical resolution

Uncertainty: Wavelength

2015/11/11: Van Gilder

Our choice of wavelength range is **sufficient** to capture most of the simulated MW impacts on hub-height wind speed

Uncertainty: Wave period

Wave periods: 4 hr to 8 hr

- Overall, there is **much less consensus** in terms of both wave pattern and magnitude between the model and observations when the wave period increases.
- This could mostly attribute to the fact that MWs, specially trapped lee waves, are high frequency signals.

Conclusions

- 1. The WRF model has moderate skill in simulating observed MW.
- 2. Given WRF predictions of wavelength range and wave period, the Fast Fourier Transform can calculate the simulated MW impact on hub-height wind speed.
- 3. The resulting wind speeds agree well with SoDAR observations in terms of both magnitude and pattern.
- 4. For the simulated cases, WRF consistently predicts impacts of significant MW events about an hour earlier than the actual observations.