Improving Snow-to-Liquid Ratio Forecasts in the Western United States

Michael Wessler, Jim Steenburgh

University of Utah

Presenting Author: Michael Wessler

Winter Precipitation Forecasts

- Challenges in addition to quantitative precipitation forecasts (QPF):
 - Precipitation type
 - Snow-to-liquid ratio (SLR)
 - Snowfall rates and amounts
 - Snow level
 - Wind transport
- Civil and economic impacts can be significant, disrupting travel, impacting commerce and tourism, and causing widespread property damage

Objectives

- Improve accuracy of snowfall forecasts in the western U.S. through post-processing using a novel Snow-to-Liquid Ratio (SLR) algorithm
- Produce snowfall forecast products at a resolution better able to account for variability in complex terrain (800 m)
- Provide SLR forecast tools to be evaluated as a part of the NOAA-HMT Winter Weather Experiment and potential operational applications

Snow-to-Liquid Ratio (SLR)

- Used to convert the QPF to a quantitative snowfall forecast (QSF)
- Methods in operational use (combined using expert/equal weighting):
 - Apply a fixed value (10:1)
 - Based on highly simplified univariate statistical relationships
 - Based in climatology derived from NWS COOP observing sites
- Significant variability in SLR may exist:
 - Over short distances in complex terrain
 - Within a single event
 - Event-to-event
 - Deviations from climatology may be large

Controls on SLR

- Crystal type and size
- Riming
- Aggregation
- Wind transport
- Melting or sublimation
- Rain on snow
- Metamorphism and/or external compaction

Image: snowcrystals.com; SLR based on Power et. al. 1964, Dubé 2003, Cobb 2006

SLR Climatology

UNIVERSITY Of Utah

Monterey, CA

Avg SLR: 14.1 Standard Dev: 11.4 75th Percentile: 18.7 50th Percentile: 10.3 25th Percentile: 4.8

Salt Lake City, UT

Avg SLR: 14.2 Standard Dev: 7.0 75th Percentile: 17.5 50th Percentile: 13.0 25th Percentile: 9.8

Baltimore/Washington

Avg SLR: 11.8 Standard Dev: 6.4 75th Percentile: 14.5 50th Percentile: 10.5 25th Percentile: 7.8

Simple Snow Level for SLR Application

- Assess the height of the 0.5°C Wet Bulb Temperature
- Apply SLR above 'snow level' with linear reduction in transition zone

Modeling SLR with Support Vector Regression

- Support Vector Regression (SVR)
 - Classifies points in a constructed multidimensional space
 - Strong performance on small-to-medium sized datasets
- Training the model:
 - Use a set of predictors (ERA5 grids) and target values (SLR observations)
 - Trained on minimizing Mean Squared Error
- Generalize the model, apply to the GFS

Modeling SLR with Support Vector Regression

- Observations:
 - High-elevation snow safety site in northern Utah's Wasatch mountains
 - Manual 12-hour accumulated snowfall and snow water equivalent (SWE)
- Train/Test Set:
 - Model: ERA5 Reanalysis (0.28°)
 - 20 Cool Seasons (1999 2019)
 - n=1915 events
- Reforecast/Verification Set:
 - Model: GFS (0.25°)
 - 3 Cool Seasons (2016 2019)
 - n = 536 events

Available Predictors

	Available Predictors in ERA5 and GFS		
Temperature	Geopotential Height	CAPE	
Relative Humidity	Absolute Vorticity	Boundary Layer Height	
U, V Wind	Vertical Velocity	Sea Level Pressure	
Wind Speed	Wind Direction	Surface Pressure	

- Perfect prog technique (Train on ERA5, apply to GFS)
- GFS grid point elevation and mean geopotential height is used to determine the lowest above-ground pressure level, predictors below this level are not used

Results: SVR SLR Model Performance

Train/Test:

<u>Verification</u>

Results: Model Performance Comparison

- All metrics based on verification set for a single high-elevation site in northern Utah
- Must consider multiple metrics in evaluating model performance

Model	RMSE Root Mean Square Error	MAE Mean Absolute Error	MAPE Mean Absolute Percent Error	R ²
SVR ¹	3.56	2.73	26%	0.57
Alcott ²	6.60	6.60	65%	0.51
RAPv4/HRRRv3 ³	6.40	5.00	38%	0.28
Kuchera	4.93	3.97	36%	0.16
Baxter ⁴	6.03	5.06	58%	0.03
NWS Lookup Table ⁵	6.27	4.39	35%	NA
Fixed 10:1	6.00	4.40	35%	NA

Preliminary results, further tuning needed
Alcott and Steenburgh (2010)
Benjamin et al. (2020)

4 Baxter et al. (2005)

5 Department of Commerce (1996)

Next Steps: Expand Across Western U.S.

- High-quality snowfall observations are available from a number of snow safety sites
- Develop regionally-trained SVR SLR models from a variety of sites to determine the degree of improvement over a generally-trained and applied west-wide model

JNIVERSITY

WPC-HMT Winter Weather Experiment

- Provided 800 m downscaled deterministic (GFS, NAM) and probabilistic (NAEFS, SREF) SLR and snowfall forecast grids based on simplified Alcott and Steenburgh (2010) method
- Products were generally well-received, favored in subjective verification exercises over the Intermountain West
 - Majority of improvement noted at higher elevations
- Provide SLR and snowfall forecast grids for regionally-trained, SVR-based algorithm across the western U.S.
 - Push updates to University of Utah web products

Summary / Q&A

- Accurate Snow-to-Liquid Ratio (SLR) forecasts over complex terrain are critical to winter precipitation forecasts, directly affecting snowfall rates and accumulations
- Climatological or fixed SLR are insufficient in representing the degree of variability present over complex terrain, from event-to-event, and over the course of long-duration single events
- Support Vector Regression (SVR) based SLR outperforms a number of existing methods verified at a high-elevation site in northern Utah
- 2020-21 WPC-HMT Winter Weather Experiment will evaluate the performance of this novel SLR forecast technique

