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Motivation and goals

• Virtual topography effects in blocked flows capped by a density step 
(inversion layer) – sensitivity to vertical location of the density step.

• Explore dynamical connection between the hydraulic response of the 
overflow and wave excitation aloft.

• Practical consequences for form drag, wave energy density and fluxes 
aloft.



Experimental configuration

Topographic Froude 
number:

𝐹𝑟 =
𝑉∞

𝑁0ℎ𝑚
≪ 1

𝑁0 ≡ Stratification 
away from the step

𝑁𝛿𝑖/𝑁0 ≈ 8.6
• Hydraulic control, asymmetric across 

crest (e.g. Winters and Armi, JFM 2014)
• What about the density step?



Numerical approach

• Spectral Navier Stokes solver with Boussinesq approx., (Winters and 
De La Fuente, 2012)

• Immersed boundary formulation.

• Free slip at solid boundaries, sponge layers at top and sides.

• 6th order  (𝜕6/𝜕𝑥𝑖
6) hyperdiffusivity to dissipate sub-grid scale 

motions

• Nudging to minimize reflections of upstream propagating columnar 
modes:



Plunging interface 𝑧0 ≈ 1.33ℎ𝑚Flat interface 𝑧0 ≈ 1.73ℎ𝑚

The vertical location of the density interface has a dramatic 
effect on the wave dynamics aloft



Flat interface – weak perturbations 
aloft
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Plunging interface –energetic 
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Flat interface – weak perturbations 
aloft

Density interface  acts as ‘Virtual topography` for flow aloft  
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Across-crest asymmetry implies flow 
within upstream ‘wave-guide` must 
be subcritical and there is a transition 
to super-criticality across the crest
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Across-crest asymmetry implies flow 
within upstream ‘wave-guide` must 
be subcritical and there is a transition 
to super-criticality across the crest

Include density interface

Exclude density interface

Supports upstream propagating 
long wave with 𝑐 ≈ −0.2 𝑉∞!

Solving the T-G equation shows it does not 
support upstream propagating waves, i.e. 
supercritical

Two 
Choices for 

the 
waveguide

Case: 𝑧0 = 1.33ℎ𝑚 – why does the interface plunge



Wave energy density aloft

About 6 times 
larger WED when 
the interface 
plunges!



Vertical energy flux

Total non-linear flux (time mean) Eddying pressure work component



Vertical energy flux
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Vertical energy flux

VEF over 3 
times as high
When the 
interface 
plunges!

Total non-linear flux (time mean) Eddying pressure work component

In general, the relative amplification of the wave 
response will depend on the stratification ratio 𝑁𝛿𝑖/𝑁0
(≈ 8.6 in our experiments)
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• A plunging interface 
produces a further drop 
in hydrostatic pressure in 
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• 20% higher form drag



Normalized form drag

• Plunging interface 
produces a further drop 
in hydrostatic pressure in 
the lee.

• 20% higher form drag

• Long 3D ridge – The drag 
force initially rises as the 
hydraulically controlled 
overflow develops, but falls 
off as the flow starts 
splitting ‘around’ (JAS, 2019)



Summary

• The wave response aloft depends sensitively on the vertical location 
of the density step.

• The question of whether or not the density step plunges across the 
crest is fundamentally connected to the hydraulic dynamics.

• A plunging density interface increases the form drag and produces a 
significantly more energetic wave field aloft.
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