Is Nonlinearity Important in Non-Breaking Mountain Waves?

Johnathan J. Metz and Dale R. Durran 19th Conference on Mountain Meteorology 14 July 2020

UNIVERSITY of WASHINGTON

 > Linear theory has long been applied to mountain waves, with a lot of success

Introduction

 $D_{ref} \propto \rho_0 N_0 U_0 h^2$

- Linear theory has long been applied > to mountain waves, with a lot of success
- **Gravity wave drag** > parameterizations compute reference drag based upon constant N and U

TABLE 1. Intercomparison of selected sub-grid-scale			
		Helfand et al. (1987) National Aeronautic and Space Administration (NASA)/ Goddard Space	$-k\rho_0N_0U_0h^2$
Designer/user(s) (year) and institution(s)	Drag at the reference level (τ_0)	Flight Center (GSFC)	
Boer et al. (1984) Atmospheric Environment Service (AES)/Canadian Climate Center (CCC)	$-\overline{k} ho_0N_0U_0h$	Alpert et al. (1988) National Meteorological Center (NMC)/National Weather Service/NOAA Stern and Pierrehumbert (1988) GFDL	$-k \frac{\rho_0 U_0^2}{N_0} G(Fr); G(Fr) = \frac{Fr^2}{Fr^2 + 1}$
Chouinard et al. (1986) AES/CCC	$-\overline{k} ho_0N_0U_0h$		$-k \frac{\rho_0 U_0^3}{N_0} G(Fr); G(Fr) \equiv \frac{Fr^2}{Fr^2 + 1}$
Palmer et al. (1986) United Kingdom Meteorological Office	$-k\rho_0 N_0 U_0 h^2$	Iwasaki et al. (1989) Japanese Meteorological Agency Surgi (1989) University of Miami	$-k ho_0N_0U_0h^2$
McFarlane (1987) AES/CCC	$-k ho_0N_0U_0h^2$		$-k\rho_0 N_m U_0 h^2;$ $N_m = \sqrt{1 - \epsilon} N_d (0 < \epsilon < 0.3)$
Pierrehumbert (1986) Geophysical Fluid Dynamics Laboratory (GFDL)/National Oceanic and Atmospheric Administration (NOAA)	$\begin{split} -k \frac{p_0 U_0^3}{N_0} G(Fr); \\ G(Fr) &= \frac{Fr^2}{Fr^2 + 1} \left\{ Fr < Fr_c \right\} \\ & \{ = 3 + 5(Fr - Fr_c)^2; Fr > Fr_c \} \end{split}$	Hayashi et al. (1992) GFDL/NOAA	$-k ho_0N_0U_0h^2$
		A test scheme, constructed following Pierrehumbert (1986) and Miller and	$-\frac{m}{\Delta x}\frac{\rho_0 U_0^2}{N_0} G(Fr);$
Miller and Palmer (1986), Miller et al. (1989)	$-k\rho_0N_0U_0h^2$	Palmer (1986)	$G(Fr) = \frac{Fr^2}{Fr^2 + 1}$
European Centre for Medium-Range Weather Forecasts (ECMWF) and UKMO		A revised scheme constructed in the present study	$-E \frac{m}{\Delta x} \frac{\rho_0 U_0^3}{N_0} \frac{Fr^2}{Fr^2 + C_0/\text{OC}};$ $E = (\text{OA} + 2)^{C_E P_0/Fr_e}$
Stern et al. (1987) GFDL/NOAA	$-k\frac{\rho_0 U_0^3}{N_0} G(Fr); G(Fr) = \frac{Fr^2}{Fr^2 + 1}$		
McFarlane et al. (1987) CCC and Canadian Meteorological Centre (CMC)	$-k ho_0N_0U_0h^2$		

Kim and Arakawa (1995)

Introduction

 $D_{ref} \propto \rho_0 N_0 U_0 h^2$

- Linear theory has long been applied to mountain waves, with a lot of success
- > Gravity wave drag parameterizations compute reference drag based upon constant N and U
- > Variation of properties with height is treated by WKB approximation

TABLE 1. Intercomparison of selected sub-grid-scale		Helfand et al. (1987)	$-k\rho_0N_0U_0h^2$
Designer/user(s) (year) and institution(s)	Drag at the reference level (τ_0)	Space Administration (NASA)/ Goddard Space Flight Center (GSFC)	
Boer et al. (1984) Atmospheric Environment Service (AES)/Canadian	$-\overline{k} ho_0N_0U_0h$	Alpert et al. (1988) National Meteorological Center (NMC)/National Weather Service/NOAA	$-k \frac{\rho_0 U_0^3}{N_0} G(Fr); G(Fr) = \frac{Fr^2}{Fr^2 + 1}$
Chouinard et al. (1986) AES/CCC	$-\overline{k} ho_0N_0U_0h$	Stern and Pierrehumbert (1988) GFDL	$-k \frac{\rho_0 U_0^3}{N_0} G(Fr); G(Fr) = \frac{Fr^2}{Fr^2 + 1}$
Palmer et al. (1986) United Kingdom Meteorological Office	$-k\rho_0N_0U_0\hbar^2$	Iwasaki et al. (1989) Japanese Meteorological Agency	$-k ho_0N_0U_0h^2$
(UKMO) McFarlane (1987) AES/CCC	$-k ho_0N_0U_0h^2$	Surgi (1989) University of Miami	$-k\rho_{\theta}N_{m}U_{\theta}h^{2};$ $N_{m}=\sqrt{1-\epsilon}N_{d}(0<\epsilon<0.3)$
Pierrehumbert (1986) Geophysical Fluid Dynamics Laboratory	$-k \frac{\rho_0 U_0^3}{N_0} G(Fr);$ $G(Fr) \equiv \frac{Fr^2}{1} (Fr < Fr)$	Hayashi et al. (1992) GFDL/NOAA	$-k ho_0N_0U_0h^2$
(GFDL)/National Oceanic and Atmospheric Administration (NOAA)	$\{=3 + 5(Fr - Fr_c)^2; Fr > Fr_c\}$	A test scheme, constructed following Pierrehumbert (1986) and Miller and	$-\frac{m}{\Delta x}\frac{\rho_0 U_0^3}{N_0} G(Fr);$
Miller and Palmer (1986), Miller et al. (1989)	$-k\rho_0 N_0 U_0 h^2$	Palmer (1986)	$G(Fr) = \frac{Fr^2}{Fr^2 + 1}$
European Centre for Medium-Range Weather Forecasts (ECMWF) and UKMO		A revised scheme constructed in the present study	$-E \frac{m}{\Delta x} \frac{\rho_0 U_0^3}{N_0} \frac{Fr^2}{Fr^2 + C_0/OC};$ $E = (OA + 2)^{C_E Pr_0/Fr_e}$
Stern et al. (1987) GFDL/NOAA	$-k\frac{\rho_0 U_0^3}{N_0} G(Fr); G(Fr) = \frac{Fr^2}{Fr^2 + 1}$		
McFarlane et al. (1987) CCC and Canadian Meteorological Centre (CMC)	$-k\rho_0 N_0 U_0 h^2$		

Kim and Arakawa (1995)

Introduction

 $D_{ref} \propto \rho_0 N_0 U_0 h^2$

- Linear theory has long been applied to mountain waves, with a lot of success
- > Gravity wave drag parameterizations compute reference drag based upon constant N and U
- > Variation of properties with height is treated by WKB approximation
- > WKB fails at the tropopause!

TABLE 1. Intercomparison of selected sub-grid-scale		Helfand et al. (1987)	$-k\rho_0N_0U_0h^2$
Designer/user(s) (year) and institution(s)	Drag at the reference level ($ au_0$)	Space Administration (NASA)/ Goddard Space Flight Center (GSFC)	
Boer et al. (1984) Atmospheric Environment Service (AES)/Canadian Climate Center (CCC)	$-\overline{k} ho_0N_0U_0h$	Alpert et al. (1988) National Meteorological Center (NMC)/National Weather Service/NOAA	$-k \frac{\rho_0 U_0^3}{N_0} G(Fr); \ G(Fr) = \frac{Fr^2}{Fr^2 + 1}$
Chouinard et al. (1986) AES/CCC	$-\bar{k} ho_0N_0U_0h$	Stern and Pierrehumbert (1988) GFDL	$-k\frac{\rho_0 U_0^2}{N_0}G(Fr); \ G(Fr) = \frac{Fr^2}{Fr^2 + 1}$
Palmer et al. (1986) United Kingdom Meteorological Office	$-k ho_0N_0U_0h^2$	Iwasaki et al. (1989) Japanese Meteorological Agency	$-k ho_0N_0U_0h^2$
McFarlane (1987) AES/CCC	-kpoNoUoh ²	Surgi (1989) University of Miami	$-k\rho_0 N_m U_0 h^2;$ $N_m = \sqrt{1-\epsilon} N_d (0 < \epsilon < 0.3)$
Pierrehumbert (1986) Geophysical Fluid Dynamics Laboratory	$-k\frac{\rho_0 U_0^3}{N_0}G(Fr);$ $C(Fr) = -\frac{Fr^2}{\Gamma}(Fr < Fr)$	Hayashi et al. (1992) GFDL/NOAA	$-k\rho_0N_0U_0h^2$
(GFDL)/National Oceanic and Atmospheric Administration (NOAA)	$G(Fr) = \frac{1}{Fr^2 + 1} \{Fr < Fr_c\}$ $\{=3 + 5(Fr - Fr_c)^2; Fr > Fr_c\}$	A test scheme, constructed following Pierrehumbert (1986) and Miller and	$-\frac{m}{\Delta x}\frac{\rho_0 U_0^3}{N_0} G(Fr);$
Miller and Palmer (1986), Miller et al. (1989)	$-k\rho_0 N_0 U_0 h^2$	Palmer (1986)	$G(Fr) = \frac{Fr^2}{Fr^2 + 1}$
European Centre for Medium-Range Weather Forecasts (ECMWF) and		A revised scheme constructed in the present study	$-E \frac{m}{\Delta x} \frac{\rho_0 U_0^3}{N_0} \frac{Fr^2}{Fr^2 + C_G/\text{OC}};$
Stern et al. (1987) GFDL/NOAA	$-k\frac{\rho_0 U_0^3}{N_0} G(Fr); G(Fr) = \frac{Fr^2}{Fr^2 + 1}$		$E = (OA + 2)^{c_{eff}c_{eff}}$
McFarlane et al. (1987) CCC and Canadian Meteorological Centre (CMC)	$-k ho_0N_0U_0h^2$		

Kim and Arakawa (1995)

When are Nonlinear Processes Important?

When are Nonlinear Processes Important?

> Clearest example of nonlinear process is wave breaking, which results in gravity wave drag

When are Nonlinear Processes Important?

- > Clearest example of nonlinear process is wave breaking, which results in gravity wave drag
- > Are nonlinear effects important without wave breaking?

> Nonlinear equations reduce (without any small amplitude assumptions!) to the linear equation

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial z^2}\right)\delta + \frac{N^2}{U^2}\delta = 0$$

> Nonlinear equations reduce (without any small amplitude assumptions!) to the linear equation

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial z^2}\right)\delta + \frac{N^2}{U^2}\delta = 0$$

 Only difference in solutions is due to the finite-amplitude lower-boundary condition

 Nonlinear equations reduce (without any small amplitude assumptions!) to the linear equation

 $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial z^2}\right)\delta + \frac{N^2}{U^2}\delta = 0$

- Only difference in solutions is due to the finite-amplitude lower-boundary condition
- > Results in only minor differences between the linear and nonlinear solutions

- > For two-layer system with
 - $N_S/N_T = 2.0$:

- > For two-layer system with $N_S/N_T = 2.0$:
- > Up to 2x amplification or deamplification in the surface pressure drag

$$D = \rho_0 \int_{-\infty}^{\infty} p' \frac{dh}{dx} \, dx$$

Amplification Due to Tropopause

- > For two-layer system with $N_S/N_T = 2.0$:
- > Up to 2x amplification or deamplification in the surface pressure drag

$$D = \rho_0 \int_{-\infty}^{\infty} p' \frac{dh}{dx} \, dx$$

> In most GWD parameterizations, this curve would be a constant!

Amplification Due to Tropopause

How Does this Change at Finite Amplitude?

How Does this Change at Finite Amplitude?

> Using a semi-analytic solver, Durran (1992) found significant differences between the linear and nonlinear solutions in the two-layer system

How Does this Change at Finite Amplitude?

- > Using a semi-analytic solver, Durran (1992) found significant differences between the linear and nonlinear solutions in the two-layer system
- > However, semi-analytic methods are only available for constant *N* and *U* layers with infinitesimal transition layers between

> We already have a nonlinear time-dependent model (UW meso12)

- > We already have a nonlinear time-dependent model (UW meso12)
- > We need a *linear* time-dependent model

- > We already have a nonlinear time-dependent model (UW meso12)
- > We need a *linear* time-dependent model
- > Take meso12 and linearize advection terms and boundary conditions

- > We already have a nonlinear time-dependent model (UW meso12)
- > We need a *linear* time-dependent model
- > Take meso12 and linearize advection terms and boundary conditions
- > Run both versions of the model in 2D Boussinesq configuration and compare the differences

Two-Layer Nonlinear Amplification

Two-Layer Nonlinear Deamplification

Two-Layer Constant Winds

Normalized Pressure Drag

Maximum: 2.59 Minimum: 0.64

$$\tilde{D} = \frac{D}{D_{ref}}$$

$$D_{ref} = \frac{\pi}{4} \rho_0 N_0 U_0 h^2$$

Two-Layer Constant Winds

Normalized Pressure Drag

Maximum: 2.59 Minimum: 0.64

$$\tilde{D} = \frac{D}{D_{ref}}$$

$$D_{ref} = \frac{\pi}{4} \rho_0 N_0 U_0 h^2$$

Two-Layer Constant Winds

Normalized Pressure Drag

Amplification over Linear Solution

Stratosphere (N = 0.02)

> The tropopause is climatologically a very sharp transition in *N* (Birner, 2006)

Stratosphere (N = 0.02)

- > The tropopause is climatologically a very sharp transition in *N* (Birner, 2006)
- > Nonetheless, smoother transitions can, and do, occur

Stratosphere (N = 0.02)

- > The tropopause is climatologically a very sharp transition in *N* (Birner, 2006)
- > Nonetheless, smoother transitions can, and do, occur
- > In a linear sense, wave reflection decreases with smoother transition regions (Teixeira and Argaín, 2020)

- > The tropopause is climatologically a very sharp transition in *N* (Birner, 2006)
- > Nonetheless, smoother transitions can, and do, occur
- > In a linear sense, wave reflection decreases with smoother transition regions (Teixeira and Argaín, 2020)
- > How sensitive are the previous finite-amplitude results to a smoother transition between layers?

Stratosphere (N = 0.02)

2 km Thick Tropopause Transition

Normalized Pressure Drag

Amplification over Linear Solution

> The linear steady-state 2D Boussinesq wave equation in the presence of shear is

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial z^2}\right)w + \left(\frac{N^2}{U^2} - \frac{1}{U}\frac{d^2U}{dz^2}\right)w = 0$$

> The linear steady-state 2D Boussinesq wave equation in the presence of shear is

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial z^2}\right)w + \left(\frac{N^2}{U^2} - \frac{1}{U}\frac{d^2U}{dz^2}\right)w = 0$$

> Clearly the basic state wind speed *U* is an important component of this equation

> The linear steady-state 2D Boussinesq wave equation in the presence of shear is

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial z^2}\right)w + \left(\frac{N^2}{U^2} - \frac{1}{U}\frac{d^2U}{dz^2}\right)w = 0$$

- > Clearly the basic state wind speed *U* is an important component of this equation
- > How important are nonlinear processes in a background state with a more realistic profile of *U*?

Realistic Shear Profile

- > Constant shear from 10 m s⁻¹ to 30 m s⁻¹ in the troposphere
- > Relaxes back to ~20 m s⁻¹ in the stratosphere

Realistic Shear Nonlinear Amplification

Two-Layer N Realistic Shear

Normalized Pressure Drag

Maximum: 4.80 Minimum: 0.65

$$\tilde{D} = \frac{D}{D_{ref}}$$

$$D_{ref} = \frac{\pi}{4} \rho_0 N_0 U_0 h^2$$

Two-Layer N Realistic Shear

Normalized Pressure Drag

Amplification over Linear Solution

> Yes, nonlinearity is important in non-breaking mountain waves!

- > Yes, nonlinearity is important in non-breaking mountain waves!
- > WKB theory fails at the tropopause

- > Yes, nonlinearity is important in non-breaking mountain waves!
- > WKB theory fails at the tropopause
- > A parameterization could underestimate the true drag by a factor of 5!

- > Yes, nonlinearity is important in non-breaking mountain waves!
- > WKB theory fails at the tropopause
- > A parameterization could underestimate the true drag by a factor of 5!
- > Even a parameterization that accounts for the tropopause using linear theory would have significant error due to finite-amplitude effects

- > Yes, nonlinearity is important in non-breaking mountain waves!
- > WKB theory fails at the tropopause
- > A parameterization could underestimate the true drag by a factor of 5!
- > Even a parameterization that accounts for the tropopause using linear theory would have significant error due to finite-amplitude effects
- > Associated difficulty with parameterization is one more reason that increasing resolution to explicitly resolve more of the wave spectrum is an important goal

