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Introduction

> Linear theory has long been applied
to mountain waves, with a lot of
success

> @Gravity wave drag
parameterizations compute
reference drag based upon constant
N and U

Dref = pONOUOh2

TABLE 1. Intercomparison of selected sub-grid-scald

Designer/user(s) (year)
and institution(s)

Boer et al. (1984)
Atmospheric Environment
Service (AES)/Canadian
Climate Center (CCC)

Chouinard et al. (1986)
AES/CCC

Palmer et al. (1986)
United Kingdom
Meteorological Office
(UKMO)

McFarlane (1987)
AES/CCC

Pierrehumbert (1986)
Geophysical Fluid
Dynamics Laboratory
(GFDL)/National Oceanic
and Atmospheric
Administration (NOAA)

Miller and Palmer (1986),
Miller et al. (1989)
European Centre for
Medium-Range Weather
Forecasts (ECMWF) and
UKMO

Stern et al. (1987)
GFDL/NOAA

McFarlane et al. (1987)
CCC and Canadian
Meteorological Centre

(CMC)

Drag at the reference level (7o) |

—kpoNoUoh

—kpoNoUoh
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G(Fn = F:—’:l {Fr < Fr,)

(=3 + 5(Fr — Fr.)%; Fr > Fr.}

Fr?
Fri 41

~kpoNoUoh®

3
-+ 222 Gy G =

Helfand et al. (1987)
National Aeronautic and
Space Administration
(NASA)/ Goddard Space
Flight Center (GSFC)

Alpert et al. (1988)
National Meteorological
Center (NMC)/National
Weather Service/NOAA

Stern and Pierrehumbert
(1988) GFDL

Iwasaki et al. (1989)
Japanese Meteorological
Agency

Surgi (1989)
University of Miami

Hayashi et al. (1992)
GFDL/NOAA

A test scheme, constructed
following Pierrchumbert
(1986) and Miller and
Palmer (1986)

A revised scheme constructed

in the present study

kX

WU, Fr
N, GG = e

)
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Kim and Arakawa (1995)
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_ TABLE 1. Intercomparison of selected sub-grid-scald
Helfand et al. (1987)

Success

> Linear theory has long been applied
to mountain waves, with a lot of

Designer/user(s) (year)
and institution(s)

Boer et al. (1984)
Atmospheric Environment
Service (AES)/Canadian
Climate Center (CCC)

Chouinard et al. (1986)
AES/CCC

Palmer et al. (1986)
United Kingdom
Meteorological Office
(UKMO)
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(NASA)/ Goddard Space
Flight Center (GSFC)

Alpert et al. (1988)
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Stern and Pierrehumbert
(1988) GFDL
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Japanese Meteorological
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iversity of Mi
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Gravity wave drag
parameterizations compute ’ ,
reference drag based upon constant [ IR KL
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When are Nonlinear Processes Important?

> Clearest example of nonlinear process is wave breaking, which results in
gravity wave drag
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When are Nonlinear Processes Important?

> Clearest example of nonlinear process is wave breaking, which results in
gravity wave drag

> Are nonlinear effects important without wave breaking?
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A Special Case: Constant N and U Flow

> Nonlinear equations reduce (without any
small amplitude assumptions!) to the
linear equation

02 92 N2
—+— |6+—6=0
ox2 072 U2
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A Special Case: Constant N and U Flow

> Nonlinear equations reduce (without any
small amplitude assumptions!) to the
linear equation

0> 07 N?
—+— ]6+—6=0
ox2 072 U?
> Only difference in solutions is due to the
finite-amplitude lower-boundary condition
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A Special Case: Constant N and U Flow

Linear/Nonlinear Streamlines

> Nonlinear equations reduce (without any
small amplitude assumptions!) to the
linear equation

0> 07 N?
—+— ]6+—6=0
ox2 072 U?
> Only difference in solutions is due to the
finite-amplitude lower-boundary condition
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> Results in only minor differences between
the linear and nonlinear solutions
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Linear Dynamics with a Tropopause

> For two-layer system with
Ng/Ny = 2.0:
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Linear Dynamics with a Tropopause

> For two_layer system with Ampllfication Due to Tropopause
Ng/N; = 2.0:
> Up to 2x amplification or

deamplification in the surface
pressure drag
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Linear Dynamics with a Tropopause

> For two_layer system with Ampllfication Due to Tropopause
Ng/N; = 2.0:
> Up to 2x amplification or

deamplification in the surface
pressure drag
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> In most GWD parameterizations,
this curve would be a constant!
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How Does this Change at Finite Amplitude?
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How Does this Change at Finite Amplitude?

> Using a semi-analytic solver, Durran (1992) found significant differences
between the linear and nonlinear solutions in the two-layer system
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How Does this Change at Finite Amplitude?

> Using a semi-analytic solver, Durran (1992) found significant differences
between the linear and nonlinear solutions in the two-layer system

> However, semi-analytic methods are only available for constant N and U
layers with infinitesimal transition layers between
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Methods

> We already have a nonlinear time-dependent model (UW meso12)
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> We need a linear time-dependent model
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Methods

We already have a nonlinear time-dependent model (UW meso12)
We need a linear time-dependent model

Take meso12 and linearize advection terms and boundary conditions

VvV V V V

Run both versions of the model in 2D Boussinesq configuration and compare
the differences
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Two-Layer Nonlinear Amplification

Linear Nonlinear
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Two-Layer Nonlinear Deamplification

Nonlinear

Geopotential Height (km)
Vertical Velocity (m/s)

300
X (km)
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Two-Layer Constant Winds

Normalized Pressure Drag
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Two-Layer Constant Winds

Normalized Pressure Drag
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Two-Layer Constant Winds

Normalized Pressure Drag Amplification over Linear Solution
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Finite-Depth Tropopause

Stratosphere
(N = 0.02)

Troposphere
(N =0.01)
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Finite-Depth Tropopause

> The tropopause is climatologically a very sharp
transition in N (Birner, 2006) Stratosphere

(N = 0.02)

Troposphere
(N =0.01)
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Finite-Depth Tropopause

> The tropopause is climatologically a very sharp
transition in N (Birner, 2006) Stratosphere

> Nonetheless, smoother transitions can, and do, occur (N =0.02)

Troposphere
(N =0.01)
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Finite-Depth Tropopause

> The tropopause is climatologically a very sharp
transition in N (Birner, 2006)

Nonetheless, smoother transitions can, and do, occur

In a linear sense, wave reflection decreases with
smoother transition regions (Teixeira and Argain, 2020)
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Finite-Depth Tropopause

> The tropopause is climatologically a very sharp

transition in N (Birner, 2006) Stratosphere

Nonetheless, smoother transitions can, and do, occur (N =0.02)

In a linear sense, wave reflection decreases with
smoother transition regions (Teixeira and Argain, 2020)

> How sensitive are the previous finite-amplitude results
to a smoother transition between layers? Troposphere

(N =0.01)
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2 km Thick Tropopause Transition

Normalized Pressure Drag Amplification over Linear Solution
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Vertical Wind Shear
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Vertical Wind Shear

> The linear steady-state 2D Boussinesq wave equation in the presence of

shear is
0? N 0° N N? 1 d*U i
wt| ——-————|w=
ox2 072 U2 U dz?
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Vertical Wind Shear

> The linear steady-state 2D Boussinesq wave equation in the presence of

shear is
0? N 0° N N? 1 d*U i
wt| ——-————|w=
ox2 072 U2 U dz?

> Clearly the basic state wind speed U is an important component of this
equation
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Vertical Wind Shear

> The linear steady-state 2D Boussinesq wave equation in the presence of

shear is
0? N 0° N N? 1 d*U i
wt| ——-————|w=
ox2 072 U2 U dz?

> Clearly the basic state wind speed U is an important component of this
equation

> How important are nonlinear processes in a background state with a more
realistic profile of U?
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Realistic Shear Profile

> Constant shear from 10 m s-1to 30 m s
in the troposphere

> Relaxes back to ~20 m s-1in the
stratosphere
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Realistic Shear Nonlinear Amplification
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Two-Layer N Realistic Shear

Normalized Pressure Drag

Maximum: 4.80
Minimum: 0.65
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Two-Layer N Realistic Shear

Normalized Pressure Drag Amplification over Linear Solution

Normalized Pressure Drag
Tropopause Height (km)
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Conclusions

Yes, nonlinearity is important in non-breaking mountain waves!
WKB theory fails at the tropopause
A parameterization could underestimate the true drag by a factor of 5!

VvV V V V

Even a parameterization that accounts for the tropopause using linear
theory would have significant error due to finite-amplitude effects
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Conclusions

Yes, nonlinearity is important in non-breaking mountain waves!
WKB theory fails at the tropopause

A parameterization could underestimate the true drag by a factor of 5!

VvV V V V

Even a parameterization that accounts for the tropopause using linear
theory would have significant error due to finite-amplitude effects

> Associated difficulty with parameterization is one more reason that
increasing resolution to explicitly resolve more of the wave spectrum is an
important goal
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