INTRO & CONTEXT	ICAR	HICAR	C & O
000	000	00000	00

Dynamical downscaling to sub-km resolutions in complex alpine terrain:

The performance of the Intermediate Complexity Atmospheric Research (ICAR) model.

Bert Kruyt, Ethan Gutmann*, Dylan Reynolds, Rebecca Mott

WSL Institute for Snow and Avalanche Research SLF * National Center for Atmospheric Research NCAR

			xtik
000	000	00000	00
INTRO & CONTEXT	ICAR	HICAR	C & O

- Intro: Operational snow hydrology in Switzerland
- The Intermediate Complexity Research (ICAR) model
- Coupling ICAR to COSMO-1
- HICAR: high-resolution modeling in complex terrain
- Conclusions and Outlook for future development

km

•	a 11	o. –	NYK
000	000	00000	00
INTRO & CONTEXT	ICAR	HICAR	C & O

OPERATIONAL SNOW HYDROLOGY AT SLF

THE OSHD FRAMEWORK

INTRO & CONTEXT	ICAR 000	HICAR	C & O 00
			(

HYDROLOGICAL FORECASTING ACROSS SCALES

Mott et al. 2018

<ロ><回><回><回><回><回><回><回><回><回><回><回<</p>

DYNAMICAL D	OWNSCALING TO) SUB-KM	
Intro & Context	ICAR	HICAR	C & O
000	●○○	00000	00

RESOLUTIONS

GOAL: A new model chain to *dynamically* downscale meteorological parameters relevant to hydrological forecasting to the sub-km scale, in order to force an energy balance snow model.

Intro & Context	ICAR	HICAR	C & O
000	000	00000	00

THE INTERMEDIATE COMPLEXITY ATMOSPHERIC RESEARCH (ICAR) MODEL

- ► Navier-Stokes ← too heavy
- P, U/V interpolated to domain
- Mass conservation; divergence

$$-\frac{\partial\rho w}{\partial z} = \frac{\partial\rho u}{\partial x} + \frac{\partial\rho v}{\partial y},$$

- (Linear mountain wave theory)
- ► T, QV, ... at boundary
- various microphysics, advection and pbl schemes
- Noah LSM

ICAB - COSM			xte
INTRO & CONTEXT 000	ICAR ○○●	HICAR 00000	C & O 00

9.2

<ロト < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 0 < 0

Intro & Con 000	ITEXT	ICAR 000	HICAR ••••••	C & O 00
Анүе	BRID COORD	INATE SYS	ТЕМ	
10000 - 19 9000 - 19 9000 - 19 9000 - 19 9000 - 2000 - 2000 -	12 9.4 9.6 9.5 9.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10	10.0 10.2 10.4	Model top H terrain $h(x, y)$	
10000 - (7% e w) 9000 1000 1000 1000 2000 2000	12 9.4 9.6 5.4 Longtone	nate	z(x, y, Z) = h(x, y) + Z[H - h(x, y)]/H.linear terrain decay	
10000 - (75 e w) 9001- 4000 - 2000 - 2000 -	Hybrid Coordinate	100 102 104	$z(Z) = Z + h \frac{\sinh[(H - Z)/s]}{\sinh[H/s]}.$ s controls terrain decay $b_i(Z) = \frac{\sinh[(Z_T/s_i)^n - (Z/s_i)^n]}{\sinh[(Z_T/s_i)^n]},$	

9.6 9.8 Longitude

・ロト・日本・日本・日本・日本・日本

INTRO & CONTEXT	ICAR 000	HICAR o●○○○	C & O 00

TERRAIN-INDUCED SPEED-UP

 $-\frac{\partial\rho w}{\partial z} = \frac{\partial\rho u}{\partial x} + \frac{\partial\rho v}{\partial y},$

Need: Horizontal wind acceleration rather than vertical motion.

Initially parameterized based on the terrain height $h(\boldsymbol{x},\boldsymbol{y})$

New: difference between lo-res and hi-res terrain

< ロ > < 団 > < 豆 > < 豆 > < 豆 > < 豆 = の < @</p>

D			XXX
000	000	00000	00
INTRO & CONTEXT	ICAR	HICAR	C & O

RESULTS: HORIZONTAL WIND

10.0 10.2

Longitude

10.4 9.2 9.4 9.6 9.8

9.2 9.4 9.6 9.8

10.0

Longitude

10.2 10.4

W values (m s-1). Cross sec. @ lat 47.0

- Dynamical downscaling is hard! (Especially in complex terrain)
- Scales are relevant, $20 \rightarrow 4km \neq 1km \rightarrow 250m$
 - Avoid double counting
- Crux: how to maintain COSMO's excellent large scale performance, while *refining* the small scale processes

Outlook

- Nudging
- Higher order advection
- SLEVE coordinate system
- Horizontal wind deflection

Intro & Context	ICAR	HICAR	C & O
000	000	00000	○●
QUESTIONS?			

Wednesday, July 15, 2:10 PM Mountain Time (US) 10:10 PM Central European Time (CET)

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >