Orographic Precipitation, Drying Ratio and Isotope Fractionation

- 1. Modified Upslope Model
- 2.A Drying Ratio Formula
- 3. Drying Ratio from Soundings
- 4. Drying Ratio from Isotopes
- 5. Paleo Climate: The OP Thermometer

R.B. Smith Yale University 19th AMS Conference Mountain Meteorology

Alpha Values: Blue: $T=0^{\circ}\mathrm{C}~\mathrm{Red}$: $T=-20^{\circ}\mathrm{C}~\mathrm{liquid}~\mathrm{Gray}$: $T=-20^{\circ}\mathrm{C}~\mathrm{ice}$

The OP Thermometer

Physics

- 1. Hsat increases with T
- 2. Alpha decreases with T
- 3. Sensitivity increases with mountain height

This plot shows isotope ratio in mountain top precipitation (or the ice core) as a function of regional temperature.

Conclusions

- 1. The OP Drying Ratio is fairly well estimated by:
 - 1. The new upslope DR formula
 - 2. Balloon Sounding Pairs
 - 3. Streamwater Isotope Ratios
- 2. OP isotope fractionation is larger and more sensitive to temperature in cold climates.
 - 1. Rising air dries faster at low temperature (i.e. smaller Hsat(T))
 - 2. Fractionation factor $\alpha(T)$ is larger at low temperature (esp. ice phase)
 - 3. Sensitivity to T increases with mountain height
- 3. The OP Thermometers on Greenland and Antarctica record the Pleistocene polar climate