Observations of KH wave fall-streaks over complex terrain by airborne radar and in-situ probes

Coltin Grasmick, Bart Geerts, Jeff French, and Bob Rauber

Mountain Meteorology - July 2020 Work funded by NSF AGS 1547101

Do Kelvin-Helmholtz (KH) waves effect precipitation?

- KH waves form in a layer of high shear where the Richardson number is low
- Turbulent mixing within the layer reduces the windshear and thus the instability
- Up and downdrafts grow then dissipate, often in cycles

UW King Air Wyoming Cloud Radar

- Wyoming Cloud Radar (WCR)
 - 3 mm wavelength (95 GHz)
 - 37.5 m resolution & 0.7° beamwidth
 - Reflectivity and radial velocity
 - Additional down-forward beam provides dual-Doppler capabilit

KH waves are ubiquitous over mountainous terrain

Dual-Doppler reveals additional kinematic information

Possible Microphysics impacts

- 1) Gravity wave train where repeated up/down drafts produce repeated supersaturation fluctuations.
- 2) Overturning KH billows with the greatest updraft velocities and parcel displacements.
- 3) Fine-scale turbulence from breaking KH billows

Examples of KH wave fall-streaks

Case #1: Flight-level billows

- KH billow updrafts contain additional liquid water
- KH billow updrafts have increased quantities of ice particles

Vertical velocity_{WCR} (m s⁻¹)

19-Jan-2011 | Level 1 | 183944-184523 UTC | Leg 18

٠

Looking before and after KH wave train to glean net effect.

19-Jan-2011 | Level 1 | 183944-184523 UTC | Leg 18

- Before the KH wave train low concentrations of cloud droplets are difficult to measure
 - Much higher amounts of cloud water exists at the end of the KH waves.

Case #2: Fall-streaks through flight-level

Enhanced reflectivity plumes descend from KH waves to be measured at flight level.

Flight level temp: -9°C

18-Feb-2017 | Level 1 | 224845-225800 UTC | Leg 4

In situ and WCR-derived Energy Dissipation Rate (EDR) provide a connection between turbulence intensity and measured microphysics. In addition to collision-coalescence, turbulence may increase ice concentrations through secondary ice-nuclei activation or multiplication processes.

Case #3: Cloud top instability + KH waves

Cloud top cooling may reduce stability and lower the Richardson number below critical value.

Case #4: Fall-streaks intersect the surface

KH waves in shear below flight-level. Dual-Doppler synthesis provides wind along flight path and vertical shear.

Case #5: KH waves fall-streaks in Liquid cloud

- "Stratiform" precipitation systems over complex terrain frequently contain KH waves as observed during the CAMPS and SNOWIE campaigns → flow over terrain generates shear.
- Radar and in-situ measurements of fall-streaks from the UWKA show that KH waves produce microphysical effects in mixed-phase clouds to **facilitate ice growth and remove cloud liquid**.
- Reflectivity and precipitation enhancement occurs from a combination of processes starting with

 (1) the production of liquid water in updrafts and (2) collection and accretion of water by fine-scale turbulence (breaking KH waves).
- The ability of KH waves to produce fall streaks likely **depends on the wave amplitudes as well as cloud characteristics** (e.g. mixed phased / kinetically limited).