UiO Department of Geosciences

University of Oslo

Snowfall Regime Evaluation for MetCoOp Ensemble Prediction at a Norwegian Mountain Site

19th Conference on Mountain Meteorology

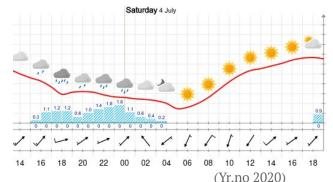
Norwegian Meteorological Institute

Franziska Hellmuth ^{a)}

July 15, 2020

Bjørg Jenny Kokkvoll Engdahl ^{a,b)}, Trude Storelvmo ^{a)}, Steven J. Cooper ^{c)}

- a) Department of Geoscience, University of Oslo, Oslo, Norway
-) Norwegian Meteorological Institute, Oslo, Norway
- c) University of Utah, Salt Lake City, Utah

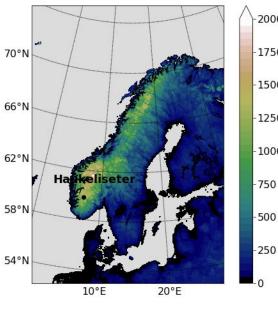

• 19th Conference on Mountain Meteorology


Importance of Snowfall

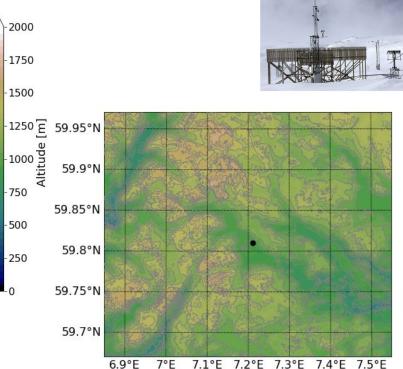
- Precipitation observations are important
 - Hydrology, climate, weather research
- Orographic precipitation: important source of drinking water and can cause
 - avalanches in winter
 - Floodings during melt season
- Forecast uncertainties are an important

research topic

UiO **Bepartment of Geosciences**



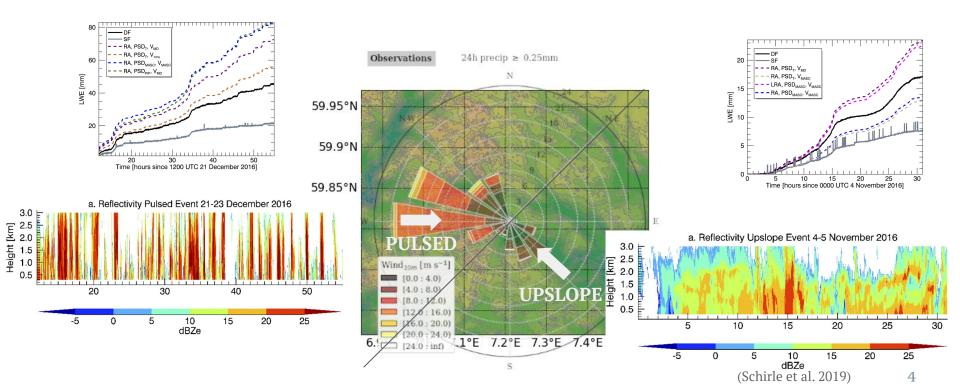
⁽Colleuille 2020)


Franziska Hellmuth

Haukeliseter Site and Instrumentation

UiO **Bepartment of Geosciences**

University of Oslo

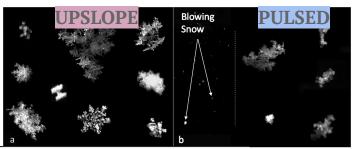

- Double fence snow gauge
- Wind
- Temperature
- **Relative humidity**
- MASC, PIP, MRR

Schirle

et al.

Haukeliseter Snowfall Regimes

UiO **Bepartment of Geosciences**

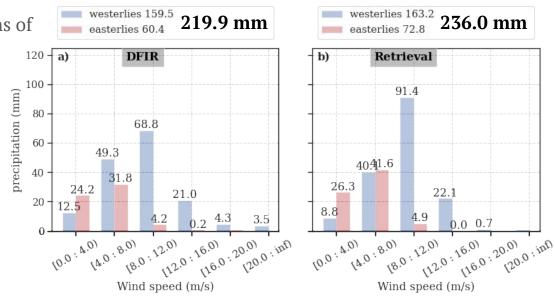


Franziska Hellmuth

Retrieval of Snowfall from Combined Radar and Microphysical Observations

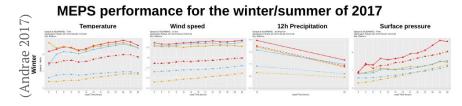
• Optimal estimation snowfall retrieval

UiO Bepartment of Geosciences


Particle model	PSD	Fall speed	% difference			
Rimed aggregate	MASC	MASC	+9			
Rimed aggregate	PIP	PIP	-0.4			
Unrimed aggregate	MASC	MASC	+78.7			
Unrimed aggregate	PIP	PIP	+59.4			
Rimed aggregate	Temperature-based	Doppler velocity	+27.3	PSD λ	Fall speed	% difference
		Rimed aggregate		MASC	MASC	+48.9
		Rimed aggregate		PIP	Doppler velocity	+58.7
		Unrimed aggregate		MASC	MASC	+138.6
(Schirle et al. 2019)		Rimed aggregate		Temperature-based	Doppler velocity	+15.8

Retrieval Validation - Winter 2016-2017

- Radar retrievals and DFIR observations of surface snowfall
 12
 - Total difference: +7.3%
- Upslope (easterlies)


UiO Bepartment of Geosciences

- 27.5% of total precipitation
- Difference: +20.5%
- **Pulsed** (westerlies)
 - **72.5%** of total precipitation
 - Difference: +2.3%

• 19th Conference on Mountain Meteorology

MEPS and microphysical adjustments

- Cooperation between Norway, Sweden, Finland
- EPS operational since Nov 2016, based on HARMONIE-AROME
- 2.5 km grid spacing

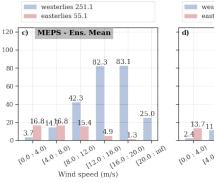
UiO Department of Geosciences

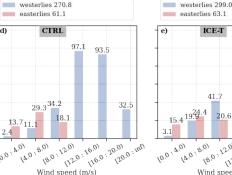
- 65 levels
- Consisted of 1+9 members
- Control and perturbed members runs up to 66h and 54h, respectively
- Microphysics is resolved in ICE3
 - Supercooled liquid depleted too quickly

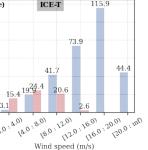
- Engdahl et al. 2020
 - Included different ice nucleation scheme
 - Autoconversion, rain accreting cloud water, ice initiation, snow/graupel collecting cloud droplets and rain, mass-diameter relation and fall speed, rain size distribution
- Engdahl et al. (in review)
 - \circ 3 month simulations winter 2016-2017
 - CTRL, ICE-T

MEPS Seasonal Snowfall Verification - Surface

precipitation (mm)


- Overestimation of surface snowfall
- Increase from $CTRL \rightarrow ICE-T$


UiO Bepartment of Geosciences


- Due to more graupel production and snow in Southern Norway in the model simulations
- Model bias
 - Small during upslope
 - Large during pulsed
- Pulsed
 - Too much snow at 10-m wind speeds
 > 12m/s)
 - Strong wind bias in model (Müller et al. 2017)
 - Undercatch by DFIR at high wind speeds (< 9m/s \rightarrow 10%, up to 20m/s \rightarrow 20%, Nitu et al. 2018)

120 -	a)	D	FIR		
100 -					
80 -			58.8		
60 -			0.0		
40 -	4	9.3			
40 7	24.2	31.8		21.0	
20 -	12.5			21.0	

	MEPS	CTRL	ICE-T
Total	+36.4%	+50.9%	+64.7%
Upslope	-19.0%	+1.2%	+4.5%
Pulsed	+57.4%	+69.8%	+87.5%

MEPS Seasonal Snowfall Verification - Vertical

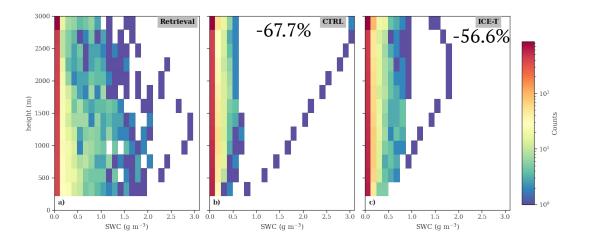
>

• Underestimation of SWP

UiO **Bepartment of Geosciences**

- Decrease of bias from CTRL to ICE-T
- Model bias during pulsed
 - Too much snow at 10-m wind speed 16m/s

SWP	CTRL	ICE-T
Total	-67.7%	-56.6%
Upslope	-72.0%	-59.2%
Pulsed	-66.6%	-55.9%



MEPS Seasonal Snowfall Verification - Vertical

- Microphysical adjustments improved SWC
 - Related to the increase in snow and decrease in graupel
 - $\circ \longrightarrow$ snow remains longer in the atmosphere
 - $\circ \quad \rightarrow \text{smaller fall velocities}$

UiO Bepartment of Geosciences

- Perhaps, still too much graupel
 - Particles fall out too fast in the model
 - $\circ \quad \rightarrow \text{accumulate more at the surface} \rightarrow \\ \text{overestimation at the surface}$
- Underestimation of SWC by model
 - Timing of the 30-min pulses might be missed

Summary

University of Oslo

UiO Bepartment of Geosciences

- Estimated the vertical profile of snowfall using combined radar, in-situ microphysical, and fall speed observations
- Identified two primary storm regimes with distinct meteorological and microphysical characteristics
- Use to validate operational forecast model MEPS with different microphysical schemes
 - Overestimation at the surface
 - Underestimation in the vertical

	Robert O. Da
eed	Photo:
imes	and the starts

• 19th Conference on Mountain Meteorology

Surface	Retrieval	MEPS	CTRL	ICE-T
Total	+7.3%	+36.4%	+50.9%	+64.7%
Upslope	+20.5%	-19.0%	+1.2%	+4.5%
Pulsed	+2.3%	+57.4%	+69.8%	+87.5%
Vertical			CTRL	ICE-T
Total			-67.7%	-56.6%
Upslope			-72.0%	-59.2%
Pulsed			-66.6%	-55.9%