

The CACTI Field Campaign: Improving understanding of convective cloud processes in complex terrain

Adam Varble, Zhe Feng, Joseph Hardin, Paloma Borque, Nitin Bharadwaj, Alexis Hunzinger, James Marquis, and Alyssa Matthews Pacific Northwest National Laboratory

Zhixiao Zhang University of Utah

Stephen Nesbitt University of Illinois

Paola Salio University of Buenos Aires

with contributions by numerous others

July 13, 2020 19th AMS Conference on Mountain Meteorology

PNNL is operated by Battelle for the U.S. Department of Energy

Northwest

The Cloud Aerosol and Complex Terrain Interactions (CACTI) Experiment

Facilities: DOE ARM AMF-1 (> 50 instruments), C-SAPR2 radar, G-1 aircraft (IOP, ~40 in situ instruments), and supplemental sites

Primary Goal: Quantify the sensitivity of convective cloud system evolution to environmental conditions by utilizing a natural hotspot for convective cloud development and organization

Photo by Jason Tomlinson

Ground Measurements

Instrument Property C-band Scanning ARM Precipitation Radar Hydrometeor radar reflectivity, Height [km] 5.5 5.0 Doppler velocity and spectra, Ka/X-band Scanning ARM Cloud Radar Ka-band ARM Cloud Radar cloud/precipitation kinematic and microphysical retrievals Radar wind profiler Heights of cloud bases and tops, **ARM Cloud Digital Cameras** 1.5 cloud sizes and vertical velocities Cloud base height Ceilometer 20 Cloud scene/fraction **Total Sky Imager** Laser disdrometer Raindrop size distribution, fall speeds, rainfall 2D video disdrometer Tipping bucket rain gauge Weighing bucket rain gauge Optical rain gauge **Present Weather Detector** Liquid water path, precipitable 2-Channel Microwave Radiometer **High-Frequency Microwave Radiometer** water Surface pressure, temperature, Surface meteorological instrumentation (x4) 14 humidity, winds, visibility 13 도 12 또 11 Balloon-borne sounding system (x2) Vertical profiles of temperature, humidity, winds Radar wind profiler Microwave radiometers Boundary layer winds and Doppler lidar turbulence Sodar Eddy Correlation flux measurement system Surface latent and sensible heat Surface Energy Balance System fluxes, CO₂ flux, turbulence, soil moisture, energy balance -20 -10-25 -15 -5

Arc Distance, +ve \rightarrow AZ = 90.0° [km]

Ground Measurements

AMF CCN, 9-16 Nov 2018

Northwort		
NOT LITYVESL NATIONAL LABORATORY		
Property	Instrument	
Upwelling and downwelling radiation	Surface Energy Balance System Infrared thermometer – ground and sky Atmospheric Emitted Radiation Interferometer Sky radiation radiometers Ground radiation radiometers Hemispheric Shortwave Array Spectroradiometer Zenith Shortwave Array Spectroradiometer Multifilter radiometer Multifilter Rotating Shadowband Radiometer Cimel Sun Photometer	1000 500 500 10 10 10 10 10 10 10 10 10
Aerosol backscatter profile	Micropulse lidar Doppler lidar Ceilometer	
Aerosol optical depth	Cimel Sun photometer Multifilter Rotating Shadowband Radiometer	
CCN concentration	Dual Column Cloud Condensation Nuclei counter	
CN concentration	Condensation Particle Counters	
INP concentration	Filters processed in CSU ice spectrometer	
Aerosol chemical composition	Aerosol Chemistry Speciation Monitor	
Black carbon	Single Particle Soot Photometer	Ice Nucleating Particle (INP) plot to right courtesy of Paul DeMott, Thomas Hill, Sonia Kreidenweis (CSU), and Baptiste Testa (U. Lyon)
Aerosol extinction	Ambient and variable humidity nephelometers	
Aerosol absorption	Particle Soot Absorption Photometer	
Aerosol particle size distribution	Ultra-High Sensitivity Aerosol Spectrometer Scanning Mobility Particle Sizer Aerodynamic Particle Sizer	
O_3 , CO, N ₂ O, H ₂ O concentration	Trace gas instrument system	

11/13 Day

- **Biological INPs**
- Organic INPs
- Inorganic INPs

Measurement Strategy

The goal was to measure cloud base inflow properties with in situ/remote sensing measurements of clouds, precipitation, and cloud-detrained air properties in the free troposphere, with a focus on daytime operations and consistent measurements for many cases over the length of the campaign

The purpose of G-1 aircraft measurements was to capture in situ conditions in and around cumulus clouds (predeep convection) during the IOP overlapping with the RELAMPAGO campaign (early Nov to early Dec 2018)

G-1 Flights

- 79.4 hours
- 8 flights with a primary focus on orographic cumulus evolution
- 8 flights with a primary focus on deep convective initiation
- 3 flights with a primary focus on microphysics characterization
- 3 flights with a primary focus on aerosol characterization

What was Observed?

- 173 of 197 days with cumulus or stratocumulus overhead
- 79 of 197 days with deep convection pass directly overhead
- 92 of 197 days with measurable precipitation at the AMF site
- As expected, there was frequent hail, "extreme" convection, elevated convection, and mesoscale organization; but warm rain formation, extremely variable aerosol conditions, and lightly drizzling fog were also common.

KAZR Reflectivity, 26 Nov 2018

Convective Cell and Cluster Tracks

Version 1 convective cell tracks including mergers and splits using C-SAPR2 15-minute PPI volumes is completed. Post-processing statistics are underway. Clusters will be tracked next.

This is contributing to an expanding database of tracked cells with saved cloud, precipitation, and environmental properties that can be analyzed as a function of life cycle.

Tracked Convective Cell Centroids

- <u>Upper plots:</u> Cells start most frequently over the highest terrain (contoured every 500 m), specifically just east of the ridgeline top and NW of the observing site within a concave portion of the topography; end locations are shifted eastward
- Lower plots: On the order of 500 separate, tracked cells are observed to the immediate west of the observing site, decreasing east and west of the ridgeline; mean cell area increases eastward from the mountains onto the plains

Tracked Convective Cell Diurnal Cycle

Cell starting locations exhibit a distinctive diurnal cycle beginning to the north over a high plateau in early afternoon before shifting south in late afternoon, becoming more widespread into the night with a plains frequency peak between 12-3 AM and a late night/early morning peak on the western edge of the ridgeline.

20

-40

-20

0

Pacific

Correlation with Environmental Conditions

An example 3-hourly evolution ahead of the Jan 25 system on the previous slide (above) and examples of variability in convective parcel statistics in Nov 2018 (right top) and total/liquid water path in Jan 2019 (right bottom)

Model Evaluation

MCS Time (hr)

- A 6.5-month, 3-km, large domain WRF run is able to reproduce MCS timing and lifetimes (right) as well as cloud shield statistics but has more heavy rain and less light rain than retrieved
- Future work will focus on the ability of WRF to reproduce initial upscale growth stages using the radar-based cell track database
- ARM is also developing a nested LES setup through the LASSO project to simulate mini-ensembles of several orographic deep convective cases (https://www.arm.gov/capabilities/mod eling/lasso)

(d) Time of Identified MCS Stages

Thank You

Thank you to a tremendous cross-nation, cross-institution team that made CACTI possible.

CACTI Information/Data: www.arm.gov/research/campaigns/amf2018cacti

RELAMPAGO Information/Data: www.eol.ucar.edu/field_projects/relampago

Many remote sensing products and retrievals are now available or will be soon. Please contact Adam Varble (adam.varble@pnnl.gov) for more information.

