Multi-scale modeling of a wind turbine wake over complex terrain in different atmospheric stability regimes

Adam S. Wise¹, James M.T. Neher¹, Robert S. Arthur², Jeffrey D. Mirocha², Fotini K. Chow¹, Julie K. Lundquist^{3,4}

¹University of California, Berkeley ²Lawrence Livermore National Laboratory ³University of Colorado Boulder ⁴National Renewable Energy Laboratory

19th Conference on Mountain Meteorology Virtual Meeting 15 July 2020

- Acceleration over ridgelines
- Recirculation zones

- Acceleration over ridgelines
- Recirculation zones
- Atmospheric waves

- Acceleration over ridgelines
- Recirculation zones
- Atmospheric waves

Research Question: How do wakes behave in complex terrain?

- Acceleration over ridgelines
- Recirculation zones
- Atmospheric waves

Research Question: How do **wakes** behave in complex terrain?

Image modified from Mirocha et al. 2015

Goal: Use WRF-LES-GAD in complex terrain to confirm importance of stability on wake propagation

- Wind inflow in different atmospheric stability regimes
- Interaction of wake and microscale features

Rerzelev

Goal: Use WRF-LES-GAD in complex terrain to confirm importance of stability on wake propagation

- WRF: Weather Research and Forecasting model
- LES: Large-eddy simulation
- GAD: Generalized actuator disk

Goal: Use WRF-LES-GAD in complex terrain to confirm importance of stability on wake propagation

- Previously validated in different stability conditions for flat terrain
 - Mirocha et al. 2014
 - Mirocha et al. 2015
- Modifications to GAD parameterization to handle inflow in complex terrain

- Brief description of the Perdigão site and instrumentation
- Observations and measurements of wind turbine wakes at Perdigão
- Semi-idealized model and preliminary results
- Real model setup, results, and comparisons with measurements
 - Stable case study
 - Convective case study

Perdigão field campaign

- Two parallel ridges with a wind turbine on the southwest ridge
- Intensive operation from May 1 to June 15, 2017
- Instrumentation
 - 100 m meteorological towers
 - Radiosonde
 - Lidars
 - Tether lifting system (TLS)

Observations of wind turbine wakes at Perdigão

Wakes deflect downwards in stable conditions and upwards in neutral and convective conditions

Image from Wildmann et al. 2018

Modeling Perdigão

Starting with a semi-idealized model as a proof of concept

- Periodic boundary conditions
- 2D cross-section
- Grid spacing of 10 m
- Surface roughness of 0.5 m

Semi-idealized model results match well with observed wake behavior for stable conditions

Semi-idealized model results match well with observed wake behavior for convective conditions

Real model setup

	Domain	1	2	3	4	5	
Closure		2.5-level MYNN		TKE 1.5			5000 -
	dx	6750 m	2250 m	150 m	50 m	10 m	4000 - 45
	dz_{min}	60 m	60 m	30 m	30 m	8 m	
	n _x x n _y	141 x 141	181 x 181	271 x 271	271 x 271	601 x 601	
	nz	81	81	101	121	161	
	dt	30 s	10 s	0.5 s	0.0833 s	0.0167 s	

Ó

1000

2000

3000

Easting, m

4000

5000

- Forcing: GFS 0.5° Lat/Lon

- High resolution 10 m topography and land-use

Stable Case Study: June 14, 03:00-06:00 UTC

The real model compares well with met tower data

Reminder: The TLS is a device that moves up, down, and drifts

A 'virtual TLS' compares well with the actual TLS

But the model underestimates the strength of the jet

The wake deflects downward into the valley

The wake deflects downward into the valley

The model captures the hydraulic jump in the lee of the second ridge

Data courtesy R. Menke, DTU

Convective Case Study: May 13, 12:00-14:00 UTC

The real model compares well with met tower data

The wake deflects upwards above the recirculation zone

The wake deflects upwards above the recirculation zone

Conclusions

- WRF-LES captures microscale features present in complex Perdigão terrain
- The GAD model accurately captures wake interaction with terrain-induced features
- Wake deflects downwards in the stable case and upwards in the convective case

Conclusions

Rerzeev

- WRF-LES captures microscale features present in complex Perdigão terrain
- The GAD model accurately captures wake interaction with terrain-induced features
- Wake deflects downwards in the stable case and upwards in the convective case

Thank You!

Acknowledgements:

- This material is based upon work supported by the National Science Foundation under Grant No. 1565483
- high-performance computing support from Cheyenne (doi:10.5065/D6RX99HX) provided by NCAR's Computational and Information Systems Laboratory, sponsored by the National Science Foundation.
- ASW is funded by an NSF Graduate Research Fellowship

Adam S. Wise: adamwise@berkeley.edu

The model compares well with soundings but underestimates the strength of the jet

UNIVERSITY OF CALIFORNIA

The model compares well with soundings but underestimates the height of the jet

UNIVERSITY OF CALIFORNIA