A Multi-faceted Evaluation of National Water Model Snow Processes in **Complex Terrain**

1. INTRODUCTION:

The goal of this work is to understand how snow processes are represented by NOAA's National Water Model and its underlying land surface model, Noah MP, through a process-based study focused in California, on the Tuolumne river basin.

	National Water Model	NCAR	NWM OPERATIONAL Cycles (V1.0 V1.1 V1.2 V2.0)			
Edmonton	CANADA	NATIONAL CENTER FOR ATMOSPHERIC RESEARCH		Cycle	Forecast	Meteo Forcing
Celtury	Inglina Wireipeg	CUAHSI UNIVERSITIES ALLIED FOR WATER RESEARCH	Analysis	Hourly	-3-0 hours	MRMS QPE
SEL.		Duebe Ottavra	Short-Range	Hourly	1-18 hours	Downscaled HRRR/RAP blend
			Medium- Range	4 x daily	to 10 days	Downscaled GFS
tos Angula San Esign Hermania		vi le	Long- Range	Daily 16 x ensembles	to 30 days	Downscaled & NLDAS2 Bias Corr. CFS
gend Hermosita Child pamflow (cfs) 0 - 119 Cullacan 119 - 7,520 7,521 - 88,700 S8,701 - 201,900 201,901 - 460,000 201,901 - 460,000 S8,701 - 201,900	Torreda Torreda MEXICO San bair Petodi Quertars Merida		•			M operational a ings, grid and tin

The performance of the NWM historical runs forced by North American Land Data Assimilation System (NLDAS) is evaluated in the Tuolumne river in the Sierra Nevada, CA.

F. Viterbo¹, M. Hughes², K. Mahoney², R. Cifelli², M. Barlage³, D. Gochis³, J. Lundquist⁴, C. Draper¹ 1. CIRES&NOAA-PSD 2.NOAA-PSD 3.NCAR-RAL, 4. University of Washington

2. TUOLUMNE STUDY AREA:

Figure 2: Map and location of the Tuolumne river basin. Illustration of the mail characteristics of the watershed and conceptual division between the Upper and Lower Tuolumne.

5. SINGLE COLUMN EXPERIMENT: DANA MEADOWS

SWE

A single column experiment has been performed at Dana Meadows site. Some differences in SWE accumulation and melt are a result of differences between observed and NLDAS forcing, while other differences are harder to explain and suggest more systematic model \int_{Ω}^{1} deficiencies on the process side.

Figure 5. Schematic of the single column experiment, using the Noah-MP LSM. as used in the NWM.

Figure 6 (on the left) SWE (upper panel) and snow depth (lower panel) from observations (rose line), NWM simulation with NLDAS forcings (light blue line) and NWM forced by station data. Figure 7 (on the right). Monthly timeseries of precipitation, temperature and long wave forcings from station observations (violet) and from NLDAS forcings (blue line)

Figure 3: Streamflow comparison of NWM V2.0 retrospective run (violet line) with the USGS streamflow observations at the closing section of the Upper Tuolumne.

6. FUTURE TASKS:

Continue to investigate snow physical processes in order to guide future development of the NWM snow model (Noah-MP) through: • Sensitivity experiments on NWM/LSM parameters

- layers

ACKNOWLEDGEMENTS:

The authors acknowledge the NOAA Office of Weather and Air Quality (OWAQ) and the Bureau of Reclamation Office of Science and Technology for supporting the present research.

REFERENCES:

Leave Empty

This space will be automatically filled with a QR code and number for easy sharing

Observation Simulation V2.0

Streamflow evaluation hydrographs highlight the snow-dominated characteristics of the flows over the area. Overall the NWM seems to reproduce well main flow characteristics, with some underestimation in some water years.

Deep investigation on the model's reproduction of key snow processes (albedo, snow density, etc.) within the three snow

Explore the robustness of the results obtained here to other places in the Sierra Nevada or in similar snow-driven watersheds

- Lundquist, J. D., Roche, J. W., Forrester, H., Moore, C., Keenan, E., Perry, G., Cristea, N., Henn, B., Lapo, K., McGurk, B., Cayan, D. R. and Dettinger, M. D. (2016), Yosemite hydroclimate network: Distributed stream and atmospheric data for the Tuolumne River watershed and surroundings. Water Resour. Res., Accepted Author Manuscript. doi:10.1002/2016WR019261