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Meteorologist

“How well are 

we simulating 

snowfall?”

Snow hydrologist

“How well can 

we forecast 

streamflow?”

Wind redistribution and preferential distribution
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Modeling snowpack spatial distribution
Figure from: Liston and 

Sturm (1998)

Figure adapted from: 

Cristea et al. (2017)

• Snow models have progressed to represent drivers of snow 

accumulation. However, accuracy is constrained by:

• Systematic model uncertainty

• Spatial resolution necessary to resolve snow heterogeneity 

(< 10 m)
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Modeling snowpack spatial distribution
Figure from: Liston and 

Sturm (1998)

Figure adapted from: 

Cristea et al. (2017)

• Snow models have progressed to represent drivers of snow 

accumulation. However, accuracy is constrained by:

• Systematic model uncertainty

• Spatial resolution necessary to resolve snow heterogeneity 

(< 10 m)

• Fine-scale meteorology

• Fortunately, snow patterns at times near peak-snowpack can be 

repeatable interannually [Deems et al. (2008); Schirmer and Lehning (2011); 

Sturm and Wagner (2010); Woodruff and Qualls (2019);…] 
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QUESTIONS:

1. What types of observations and products can be used to 

infer historic snowpack distribution patterns?

2. How can repeatable patterns compensate for 

precipitation uncertainty and modeling constraints?
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Study domain

Tuolumne watershed, CA:

• Snow cover from ~700m – 3900 m elevation

• Subdomains:

• A: Highest elevation; steep slopes with 

various aspects

• B: Mid-elevation; various forest densities

• C: Mid-elevation; valley bordered by ridges 

with drifting and avalanching
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~ resolution of gridded 

atmospheric products
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Airborne lidar snow depth retrievals

Airborne Snow Observatory lidar:

• 3m gridded estimates of co-registered snow-free 

and snow-present flights: distribution and total 

volume

• ± 8 cm snow depth accuracy in forested and open 

areas

• Included seasons with abnormally-shallow          

and abnormally-deep snowpack
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Snow pattern repeatability
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The spatial coefficient of correlation (r) of 
snow patterns at times near peak snowpack 
ranged from r = 0.80 to 0.91
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Snow precipitation scaling [Vogeli et al. (2016)]
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𝑉𝑥,𝑦 =
𝑑𝑥,𝑦
𝜇𝑑

Distributed snow depth

Domain mean snow depth
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Snow precipitation scaling [Vogeli et al. (2016)]
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𝑉𝑥,𝑦 =
𝑑𝑥,𝑦
𝜇𝑑

Distributed snow depth

Domain mean snow depth

𝑝𝑥,𝑦
𝑖 = 𝑉𝑥,𝑦 × 𝜇𝑝

𝑖

Domain mean precip. at time i

Assumes:

• Linear relationship between precipitation and snow depth

• Unbiased domain mean precipitation

• Pattern is influenced by only snowfall
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Default simulations

• 25 m resolution simulations 

• WY2014 forcing from 6 km WRF with boundary 

conditions from the North American Regional 

Reanlaysis (NARR) 

• Precipitation distributed to the model gridcell

using MicroMet [Liston and Elder (2006a)]

• Meteorological interpolation routine

• Elevation-based lapse-rate

• Snow simulated using SnowModel [Liston and Elder 

(2006a)]
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Default simulations

r = 0.21 to 0.37
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Scaled simulations
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𝑟 ≈ 0.21 → 0.37,𝑀𝐴𝐸 ≈ 0.23 → 0.42 𝑚

𝑟 ≈ 0.63 → 0.83,𝑀𝐴𝐸 ≈ 0.20 → 0.27 𝑚

𝑟 ≈ 0.50 → 0.67,𝑀𝐴𝐸 ≈ 0.27 → 0.41 𝑚
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Ensemble of simulations using array of 

precipitation multipliers:

Best-performing

Unadjusted

X
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Scaled simulations
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𝑟 ≈ 0.99,𝑀𝐴𝐸 ≈ 0.01 𝑚

Best-performing
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Scaled simulations
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Recall, precipitation scaling assumes:

• Linear relationship between precipitation and snow depth

• Pattern is influenced by only snowfall

• Unbiased domain mean precipitation
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Continuing work

Sierra Nevada Snow Reanalysis (SNSR) [Margulis et al. (2016)]:

• SWE at ~100 m spatial resolution

• 1985 – 2016

• Retroactively reconstructs SWE using a fully-Bayesian 

assimilation of Landsat-observed fractional snow-covered area

Figure from: Margulis et al. (2016)
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Conclusions

• Snow precipitation patterns in the Tuolumne watershed are persistent between 
seasons 

• Correcting precipitation heterogeneity using patterns is challenged more by 
commonly-used modeling assumptions, as opposed to the prevalence of snow 
patterns

• Future work should consider precipitation pattern scaling that includes the effect of 
snowmelt and snow density

• Snowpack reconstructions are a promising path forward for snow pattern 
investigation in domains without lidar
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Thank you. Questions?

Question session: Thursday, 16 July at 10:50 AM (mountain time)

Justin Pflug, jpflug@uw.edu
University of Washington Civil and Environmental Engineering
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