Quantifying Snowfall from Orographic Cloud Seeding Katja Friedrich^a, K. Ikeda^b, S. A. Tessendorf^b, J. R. French^c,

R. M. Rauber^d, B. Geerts^c, L. Xue^b, R. Rasmussen^b, D. Blestrud^e, M. L. Kunkel^e, and N. Dawson^e a) University of Colorado, Boulder, CO, b) National Center for Atmospheric Research, Boulder, CO, c) University of Illinois, Urbana-Champaign, IL, e) Idaho Power, Boise, ID

Motivation: How much snow can be produced through cloud seeding? Why is it so difficult? mparison of snowfall during seeded versus non-seeded events or times as well as target and control regions (Rauber et al. 2019) lity of the experiment; changing atmospheric conditions microphysical impacts of cloud seeding using numerical models - ensemble approach (Rasmussen et al. 2018 JAMC) Accuracy of numerical model tudies identifying and tracking seeding plumes and ssociate enhancements in snowfall Identifying and tracking

Significance: radar returns are unambiguously the result of cloud seeding in regions with light or no natural precipitation

Leave Empty

This space will be automatically filled with a QR code and number for easy sharing

Conclusion

Gauge Analysis

Snow accumulation from seeding 0.05-028 mm over few minutes (rate 0.4-1.2 mm h-1).

Radar Analysis (best-match Ze-S relationship) |339,540 m3 = **136 Olympic**size swimming pools (25 min of seeding), 123,220 m3 – **50 pools** (20 min of seeding), 241,260 m3 – **96 pools** (86 min of seeding).

More info Friedrich et al. PNAS 2020