

Improving WRF/CAMx Model Performance using Satellite Data Assimilation Technique for the Uintah Basin

Huy Tran Trang Tran

Acknowledgements

Utah Division of Air Quality Uintah Impact Mitigation Special Service District Utah Legislature SB118

19th AMS Conference on Mountain Meteorology

July 15, 2020

Manual and forcible corrections to WRF had to be made to capture surface albedo)

Corrected WRF Albedo in winter 2013 ozone episode

(Ref.: Crosman et al., 2015; Neemann et al., 2015)

Neemann, E. M., Crosman, E. T., Horel, J. D., and Avey, L.: Simulations of a cold-air pool associated with elevated wintertime ozone in the Uintah Basin, Utah, Atmos. Chem. Phys., 15, 135–151, https://doi.org/10.5194/acp-15-135-2015, 2015.

Surface albedo corrections are:

- Performed on case by case basic, and there is no standard method to perform the correction.
- Heavily relies on knowledge and observations of modelers on the actual surface conditions during simulated episode
 - May results in unrealistic albedo estimations over model domain

Utilizing satellite observations (MODIS) to correct surface characteristics

Surface Shortwave Albedo (ALBEDO)

- MCD43A1: MODIS/Terra+Aqua BRDF/Albedo Model Parameters Daily L3 Global 500m V006
- MCD19A1: MODIS/Terra+Aqua Land Surface BRF Daily L2G Global 500m, 1km and 10km SIN Grid V006
- MCD19A2: MODIS/Terra+Aqua Land Aerosol Optical Thickness Daily L2G Global 1km SIN Grid V006

Surface Snow Cover Fraction (SNOWC)

• **MOD10A1:** MODIS (Terra) Snow Cover Daily L3 Global 500m Grid

Leaf Area Index (LAI)

• MCD15A3H: MODIS/Terra+Aqua Leaf Area Index/FPAR 4-Day L4 Global 500 m (4 days composite)

MODIS Data Assimilation Processes

Modifications to WRF source codes are required

Λ	/	R	F

Input files: wrfinput (LAI) wrfsfdda (ALBEDO, SNOWC)

/Registry Registry.EM_COMMON

/share output_wrf.F

/dyn_em .module_first_rk_step_part1.F

/phys

module_physics_init.F module_fddagd_driver.F module_fdda_psufddagd.F

/run/namelist.input

•••	
&fdda	
if_ramping	= 1,
dtramp_min	= 60,
grid_fdda	= 1,
grid_sfdda	= 1,
sgfdda_interval_m	= 360,
galb_sfc	= 0.950,
gsnc_sfc	= 1.000,
/	

WRF Model Configurations

Parameters	Values	
Grid size (x,y)	298 x 322 in 1.3km	
Vertical levels	37	
Vertical coordinates	Terrain-following Eta (non- hybrid)	
Vertical grid spacing	12-16 m in the boundary- layer	
Topographic dataset	USGS GTOPO30	
Land use data set	modified NLCD2011	
Veg parm table variables modified for winter simulations	SNUP, MAXALB	
Snow cover initialization	SNODAS	
Re-initialize	Every 5 days	

WRF Treatment	Option Selected	
Microphysics	Thompson	
Longwave radiation	RRTMG	
Shortwave radiation	RRTMG	
Land surface model (LSM)	NOAH	
Planetary boundary layer	MYJ	
(PBL) scheme		

MODIS data assimilation results in better estimations of ALBEDO

Modeling episode Feb 01- 28 2011

Default WRF (REF) Albedo **MODIS** assimilation 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 HP 0.60 0.64 0.68 0.72 0.76 0.80 0.84 0.88 0.92 0.96

MODIS data assimilation results in "better" estimations of Snow Cover (SNOWC)

Modeling episode Feb 01-28 2011

Default WRF (REF) **MODIS** assimilation **SNOWC** 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 OU HP 0.55 0.60 0.64 0.68 0.72 0.76 0.80 0.84 0.88 0.92 0.96

Effect of MODIS data assimilation

Effect of MODIS data assimilation (Cont.)

MODIS data assimilation does NOT necessarily result in better overall WRF performance

MODIS data assimilation does NOT necessarily result in better overall WRF performance

Modifications to CAMx source codes are also required

- CAMx calculates its own ALBEDO and SNOWC as the function of snow water equivalent, snow age, and landuse types
- At the initialization of CAMx simulation, CAMx-ALBEDO maybe higher than WRF-ALBEDO

CAMx	/Includes camxfld.inc	/IO_bins readinp.f	/CAMx getalbedo.f	
wrfcamx (ALBEDO, SNOWC)	/Mod_src camxfld.f	metinit.f	startup.f tstep_init.f	
		-		

Higher ALBEDO obtained in WRF-MODIS did not translate to higher photolysis rate in CAMx

MODIS data assimilation is not the magic wand to solve ozone underperformance issue

Summaries

- We have developed a methodological approach in improving WRF/CAMx performance using satellite data.
- MODIS data assimilation "improves" WRF and CAMx model performance.
- Positive effect of MODIS assimilation varies with different simulation episode and length of the episode.
- Effect of the technique could be more substantial in direct coupling meteorology-chemistry model.
- Better resolution and more frequent satellite dataset in future will enhance the benefit of satellite- base data assimilation technique.
- The same approach could be applied for assimilating other satellite data product to improve performances of both meteorology and chemistry model.

