Introduction

Conclusions

Evaluating Stochastic Perturbations of Microphysical Parameters in Convection-Permitting Ensemble Forecasts of an Orographic Precipitation Event

This research is supported by NOAA Grant #NA19OAR4590136

W. Massey Bartolini, Justin R. Minder

University at Albany, SUNY

W. Massey Bartolini (mbartolini@albany.edu)

13 July 2020

Where are mesoscale ensembles headed?

- Current multi-physics CAM ensemble (HREFv2.1)
 - High spread, from both multi-physics and initial and boundary condition (IC/BC) diversity, but an ensemble of opportunity
 - Probabilistic forecasting difficult, not all members are equally likely, in part due to physics biases
 - Maintenance/development of multiple physics schemes

Х

Where are mesoscale ensembles headed?

• Current multi-physics CAM ensemble (HREFv2.1)

- → − High spread, from both multi-physics and initial and boundary condition (IC/BC) diversity, but an ensemble of opportunity
- Probabilistic forecasting difficult, not all members are equally likely, in part due to physics biases
- ★ Maintenance/development of multiple physics schemes
- Likely future single-physics CAM ensemble (RRFS, FV3-SAR-based)
 - High spread, using a combination of IC/BC and stochastic physics methods to represent both IC/BC and physics uncertainty
 - Probabilistic forecasting easier since all members are equally likely
 - Less code maintenance/development if using single physics and core

Stochastic Physics Overview

- Stochastic physics: representing uncertain model parameters or tendencies by multiplying them by a random noise pattern (varying in time/space) unique to each ensemble member
 - SPP varying <u>parameters</u>
 - SPPT varying <u>tendencies</u>
 - SKEBS accounting for uncertainty from unresolved <u>subgrid-scale processes</u>

Adapted from Jankov et al. (2017)

Stochastic Physics Overview

- Combination of SPP/SPPT/SKEBS methods vital for increasing spread in ensemble forecasts (Berner et al. 2015, Jankov et al. 2017, 2019)
- First step: identify uncertain/empirically-derived parameters in microphysics (MP) scheme that affect orographic precip. forecast and could be perturbed using SPP, constrain using OLYMPEX observations

Adapted from Jankov et al. (2017)

Motivation: Orographic Precip. Challenge

- OLYMPEX: Nov. 2015 Feb. 2016
 - Houze et al. (2017)
- Seasonal studies of surface drop size distributions (DSDs) during OLYMPEX show large variations, often within single storm
 - Zagrodnik et al. (2018)
- During OLYMPEX season, WRF consistently underpredicted windward precip., attributed to deficient warm-rain processes
 - Conrick et al. (2019)
- Varying snow crystal habit assumptions in MM5 model affects the distribution of orographic precip. over the Olympics
 - Woods et al. (2007)
- Idealized SPP studies of orographic precip. demonstrate similar spread to multi-physics ensemble
 - Morales et al. (2019)

Adapted from Houze et al. (2017)

Presentation Goals

- Single-scheme microphysics uncertainty: Use OLYMPEX data from a single case study (12–13 Nov. 2015) to constrain uncertain MP scheme parameters in high-res. numerical forecasts of orographic precip. using a HRRR-like model setup
 - Q1: How well does Thompson-Eidhammer MP (THOM) forecast observed precip?
 - Q2: How sensitive is THOM MP to changes in assumed snow crystal habit?
 - Q3: How sensitive is THOM MP to changes in assumed rain distribution shape?

OLYMPEX EVENT OVERVIEW

W. Massey Bartolini (mbartolini@albany.edu)

13 July 2020

• 0000 UTC 12 Nov. 2015 (prefrontal)

850-hPa temperature (fill/dashed contours, °C), height (solid contours, dam), and wind (barbs, m s⁻¹)

1-km AGL reflectivity (fill, dBZ), mean sea level pressure (solid contours, hPa), and 10-m wind (barbs, m s⁻¹)

• 1200 UTC 12 Nov. 2015 (prefrontal)

850-hPa temperature (fill/dashed contours,

°C), height (solid contours, dam), and wind

1-km AGL reflectivity (fill, dBZ), mean sea level pressure (solid contours, hPa), and 10-m wind (barbs, m s⁻¹)

W. Massey Bartolini (mbartolini@albany.edu)

(barbs, $m s^{-1}$)

13 July 2020

• 0000 UTC 13 Nov. 2015 (warm sector)

850-hPa temperature (fill/dashed contours, °C), height (solid contours, dam), and wind (barbs, m s⁻¹)

1-km AGL reflectivity (fill, dBZ), mean sea level pressure (solid contours, hPa), and 10-m wind (barbs, m s⁻¹)

• 1200 UTC 13 Nov. 2015 (warm sector)

850-hPa temperature (fill/dashed contours, °C), height (solid contours, dam), and wind (barbs, m s⁻¹)

1-km AGL reflectivity (fill, dBZ), mean sea level pressure (solid contours, hPa), and 10-m wind (barbs, m s⁻¹)

0000 UTC 14 Nov. 2015 (postfrontal)

850-hPa temperature (fill/dashed contours, °C), height (solid contours, dam), and wind (barbs, m s⁻¹)

1-km AGL reflectivity (fill, dBZ), mean sea level pressure (solid contours, hPa), and 10-m wind (barbs, m s⁻¹)

MODEL CONFIGURATION

W. Massey Bartolini (mbartolini@albany.edu)

13 July 2020

Introduction

Sens: Rain DSD

Conclusions

HRRR-like WRF Configuration

- WRF v4.0.3
- Configured similarly to the current NCEP HRRR (v3)
- Nested domains
- Convection only parameterized on 27 and 9-km domain
- GFS atmospheric ICs/BCs
- Initialized 12 h prior to event (1200 UTC 11 Nov. 2015)
- MYNN Level 2.5 PBL scheme and Thompson-Eidhammer aerosol-aware MP (THOM)

- Sensitivity experiments **varying assumed parameters** within THOM MP scheme (e.g., rain and snow particle size distribution coefficients, snow mass- and terminal fall velocity-diameter relation coefficients)
- Experiments and parameter value ranges **motivated by OLYMPEX observations** (e.g., crystal habit imagery, disdrometer observations, and cloud physics data)

Introduction

Sens: Rain DSD

Conclusions

HRRR-like WRF Configuration

- WRF v4.0.3
- Configured similarly to the current NCEP HRRR (v3)
- Nested domains
- Convection only parameterized on 27 and 9-km domain
- GFS atmospheric ICs/BCs
- Initialized 12 h prior to event (1200 UTC 11 Nov. 2015)
- MYNN Level 2.5 PBL scheme and Thompson-Eidhammer aerosol-aware MP (THOM)

Parameter	Abbreviation	Description	Value(s)
$\begin{array}{l} \mathbf{a}_{\mathbf{m}_{s'}} \mathbf{b}_{\mathbf{m}_{s}}, \mathbf{a}_{\mathbf{v}_{s}}, \\ \mathbf{b}_{\mathbf{v}_{s}} \end{array}$	THOM_MFV_COLM, THOM_MFV_DDRT	Snow M-D and V-D coefficients	Those for dendrite and columnar crystals, normally fixed at intermediate habit
Λ_1	THOM_SNOW_LAM1_1P6, THOM_SNOW_LAM1_4P9	Snow PSD slope parameter	Ranging between 1.6 and 4.9, normally fixed at 3.29
C _{snow}	THOM_SNOW_CAP_0P2, THOM_SNOW_CAP_0P5	Snow capacitance	Variable between 0.2 and 0.5 depending on temp.
Aerosol concentration	THOM_AERO_CLEAN, THOM_AERO_POLLUTED	Climo. aerosol concentration used in MP scheme	+/- 1 order of magnitude (clean/polluted)
μ_c	THOM_MU_C_2, THOM_MU_C_15	Cloud water PSD shape parameter	Variable between 2 and 15 (tried extremes) depending on $N_{\rm c}$
CCN/IN boost	THOM_VTS_BOOST	Increasing CCN/IN	Positive perturbations only
N_{0g}	THOM_GRAUP_N0_1E2, THOM_GRAUP_N0_1E7	Graupel intercept parameter	Variable between 10 ² and 10 ⁷ (tried extremes)
μ_{r}	THOM_MU_R_0P5, THOM_MU_R_5	Rain PSD shape parameter	Default=0, tried positive values up to 5
Rain autoconv.	THOM_ACONV_+10%, THOM_ACONV_+50%	Perturbing rate of rain autoconv.	Tried +10%, +50% multiplicative perts.
Rain collection of cloud water	THOM_RACW_+10%, THOM_RACW_+50%	Perturbing rate	Tried 10%, +50% multiplicative perts.

W. Massey Bartolini (mbartolini@albany.edu)

13 July 2020

CONTROL SIMULATION RESULTS

W. Massey Bartolini (mbartolini@albany.edu)

13 July 2020

36-h Event-Total Precipitation

Observed Precip. (QPE)

Forecast Precip. (QPF)

- Gridded QPE from radar estimate with gauge correction (Cao and Lettenmaier 2018)
- Max. obs. precipitation: 372 mm at Prairie Creek

CTRL Precipitation Biases

W. Massey Bartolini (mbartolini@albany.edu)

SENSITIVITY TO CRYSTAL HABIT: OBS. AND EXPERIMENTS

W. Massey Bartolini (mbartolini@albany.edu)

13 July 2020

W. Massey Bartolini (mbartolini@albany.edu)

W. Massey Bartolini (mbartolini@albany.edu)

W. Massey Bartolini (mbartolini@albany.edu)

W. Massey Bartolini (mbartolini@albany.edu)

Snow Fallspeed- and Mass-Diameter Equations

- Simulating sensitivity of QPF to empirically-derived snow crystal habit properties (Woods et al. 2007)
- Coefficients (a_v, b_v, f_v, a_m, b_m) vary depending on the assumed crystal habit type (dendrites = DDRT, columns = COLM)

Introduction

Sens: Rain DSD

<u>Conclusions</u>

QPF Sensitivity to Crystal Habit

W. Massey Bartolini (mbartolini@albany.edu)

13 July 2020

SENSITIVITY TO RAIN DSD: OBS. AND EXPERIMENTS

W. Massey Bartolini (mbartolini@albany.edu)

13 July 2020

Introduction

Sens: Rain DSD

Conclusions

Rain DSD Observations from Parsivel Disdrometer

Prairie Creek Parsivel observations from entire OLYMPEX campaign, by rain category (Zagrodnik et al. 2018)

W. Massey Bartolini (mbartolini@albany.edu)

13 July 2020

Rain DSD Equation

- Simulating sensitivity of QPF to rain DSD shape in THOM
- DSD is an exponential distribution if $\mu_r = 0$ (default, fixed value), otherwise a gamma distribution

Comparing Parsivel and WRF Rain DSDs

Entire event: 1200 UTC 12 Nov. - 0000 UTC 14 Nov. 2015

Prairie Creek, Elevation: 1780 m

- WRF calculations limited to observed size range from Parsivel (D > 0.25 mm)
- CTRL has too small median volume diameter and too little range of intercept parameter

Comparing Parsivel and WRF Rain DSDs

Entire event: 1200 UTC 12 Nov. - 0000 UTC 14 Nov. 2015

Prairie Creek, Elevation: 1780 m

- WRF calculations limited to observed size range from Parsivel (D > 0.25 mm)
- CTRL has too small median volume diameter and too little range of intercept parameter
- Changing assumed DSD to gamma dist. in THOM causes increase in range of intercept parameter, but even smaller median volume diameter
- Thanks to R. Conrick for help with WRF DSD retrieval

QPF Sensitivity to Rain DSD

• For $\mu_r > 0$ experiments, reduction in rain median volume diameter (slower fallspeed) causes more displacement of rain into higher terrain

W. Massey Bartolini (mbartolini@albany.edu)

13 July 2020

Overall QPF Sensitivity

Key takeaway: Need to represent uncertainty in processes that can't be described by single value, important to capture in design of next-generation ensemble model

W. Massey Bartolini (mbartolini@albany.edu)

13 July 2020

Conclusions

- **Presentation goal:** Use OLYMPEX data from a single case study (12–13 Nov. 2015) to constrain uncertain MP scheme parameters in high-res. numerical forecasts of orographic precip. using a HRRR-like model setup
 - Q1: Evaluation of Thompson-Eidhammer MP forecast (CTRL)?
 - Accurate timing of frontal and orographic precip. features
 - Good overall QPF, but windward QPF biased low relative to gauge observations
 - **Q2:** Sensitivity of QPF distribution to assumed crystal habit?
 - Numerous habits observed in UND Citation imagery
 - Habit sensitivity has strong orographic signal, impacting cold rain processes
 - **Q3:** Sensitivity of QPF distribution to rain DSD?
 - Variety of rain DSD shapes observed by Parsivel disdrometers
 - Rain DSD shape sensitivity has moderate windward/peak signal, impacting warm rain processes
 - Future work: Implementing SPP into Thompson-Eidhammer MP scheme, testing additional parameters, and running stochastic ensemble experiments for this case and entire OLYMPEX period

