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MOTIVATION

Estimates of precipitation (quantitative precipitation estimates or QPE) are important for a broad 
range of applications including:

- Flood monitoring and forecasting
- Inputs to hydrologic models
- Seasonal precipitation estimates
for water resource quantification
- Agriculture
- Fire risk outlooks

And yet QPE is often poorly known,
especially in remote complex terrain
regions. 

Aftermath of Spring Creek flash flood
28 July 1997



OBJECTIVES

We want to take account of strengths and weaknesses
of the many different QPE/QPF datasets to
(1) quantify QPE uncertainty and
(2) get a best estimate deterministic QPE.

Multi-Radar Multi-Sensor (MRMS) Products:
- Radar-only QPE
- Gauge-only QPE
- Gauge-corrected QPE
- Mountain Mapper based QPE (based on PRISM)
Stage IV: Generated by RFCs as the final “analysis of record” for the National Weather Service; 
generating methodologies vary by RFC.  CCPA is a bias-corrected Stage IV.
Others: satellite-based QPE, reanalyses, etc. 

CAM guidance: may be our ONLY source of quantitative precipitation information in remote,
observation-sparse regions.



THE SIMPLIFIED KALMAN FILTER

The community still generally uses deterministic QPE datasets as “truth”. However, the 
uncertainty associated with the various QPE/QPF products argues for an explicit treatment of 
uncertainty in a final, merged QPE dataset.  A data assimilation framework is well-suited to this 
problem.  In this work, we examine how a simplified Kalman Filter could be applied for this 
purpose.  

For this problem, xf can be considered the CAM QPF at any given time.  So it is a vector of length 
N (where N = number of model gridpoints).  y is the vector of QPE datasets (interpolated to CAM 
QPF scale for simplicity), of length jN (where j is the number of QPE datasets considered).

B will be an N x N matrix which contains information on QPF errors, as well as spatial correlations 
in QPF.  R will be a jN x jN matrix which contains information on QPE errors, as well as spatial 
correlations in QPE.

B and R determine how information is combined from the different sources.



THE SIMPLIFIED KALMAN FILTER

For this talk, I am only showing simple, illustrative examples:

QPF is HRRR 6h QPF (3km grid spacing).
QPE is MRMS 6h radar-only QPE (interpolated to HRRR scale).
R is based on the MRMS radar quality index (RQI), and is a diagonal matrix (i.e., MRMS radar-only 
QPE should not have any precipitation location errors)
B is a static value with an inverse distance weighting to take account of HRRR QPF location errors.
H is the identity matrix.
The actual calculation is carried out for small subdomains at a time (localization).  

CASES:
Two non-complex terrain cases: Two complex terrain cases:

Midwest Heavy Rain (15 July 2018) Globe, AZ, flash flood (23 July 2019)
TS Imelda (19 Sep 2019) Southern CA cutoff low (6 April 2020)



Relatively smooth terrain cases: Stage IV QPE
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Relatively smooth terrain cases: MRMS radar-only QPE
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Relatively smooth terrain cases: HRRR 6h QPF
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Relatively smooth terrain cases: MRMS RADAR QUALITY INDEX
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Relatively smooth terrain cases: B: 12.5mm R: 17.5 – 75mm
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Relatively smooth terrain cases: B: 12.5mm R: 17.5 – 137.5mm
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Relatively smooth terrain cases: B: 12.5mm R: 17.5 – 262.5mm
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Relatively smooth terrain cases: B: 12.5mm R: 17.5 – 262.5mm
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Relatively smooth terrain cases: B: 6.25mm R: 17.5 – 262.5mm
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Relatively smooth terrain cases: B: 3mm R: 17.5 – 262.5mm
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Relatively smooth terrain cases: MRMS gauge-only QPE
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Complex terrain cases: Stage IV QPE
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Complex terrain cases: MRMS radar-only QPE
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Complex terrain cases: MRMS radar-only QPE
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Complex terrain cases: HRRR 6h QPF
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Complex terrain cases: MRMS RADAR QUALITY INDEX
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Complex terrain cases: B: 12.5mm R: 17.5 – 75mm
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Complex terrain cases: B: 12.5mm R: 17.5 – 137.5mm
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Complex terrain cases: B: 12.5mm R: 17.5 – 262.5mm
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Complex terrain cases: B: 12.5mm R: 17.5 – 262.5mm
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Complex terrain cases: B: 6.25mm R: 17.5 – 262.5mm
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Complex terrain cases: B: 3mm R: 17.5 – 262.5mm
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Complex terrain cases: MRMS gauge-only QPE
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DISCUSSION AND CONCLUSIONS

This is very much a work in progress.  Cannot conclude much about the performance of the 
framework without quantitative verification.  Comparison against high-quality rain gauges, over a 
large number of cases.

The framework really needs to account for the non-Gaussian nature of precipitation.  This may 
be possible through a Gaussian transformation (as proposed by Lien et al. 2013).

Future work:

Inclusion of additional QPE datasets (being careful to maintain independent verification)

More advanced specifications of B and R (better quantification of uncertainty)

Can this framework be expanded to other time intervals (i.e., 1h precip)?

How to deal with snow?
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