

## **4.2: Characterizing Summertime Wind Systems in the Complex Terrain of the Columbia River Basin during WFIP2, and Validating HRRR Model Skill in Simulating These Flows**

Robert M. Banta, Yelena L. Pichugina, Lisa S. Darby, W. Alan Brewer, Joseph B. Olson, Jaymes Kenyon, K.O. Lantz, J. Sharp, M.J. Stoelinga, D.D. Turner, J.M. Wilczak, L. Bianco, I.V. Djalalova, H.J.S. Fernando, M.C. Marquis, A. Choukulkar, B.J. McCarty, and S.P. Sandberg

*CIRES, University of Colorado, and  
Atmospheric Remote Sensing Branch, Chemical Sciences Laboratory  
Earth System Research Laboratories, NOAA, Boulder, Colorado, USA*

19<sup>th</sup> Conference on Mountain Meteorology, *virtual presentation*: 13 July 2019

# Oregon – Washington WFIP-2\*\* Study Area



3 Doppler lidar sites: at Wasco, Arlington, and Boardman OR

WFIP-2 Goals, include

- “Improve understanding of physical phenomena, processes, and atmospheric properties that occur in these regions and [that] impact wind speeds and direction at turbine hub height” (FOA 2014)
- Validate, improve RAP and HRRR NWP forecast models



\*\*WFIP-2 = 2nd Wind Forecast Improvement Project

# Recap: Marine Intrusion



8-day composite



Lidar

1-h HRRR fcst

3-h HRRR fcst

Bias

RMSE - unbiased

Marine intrusion occurs in HRRR -

- Shut down too fast
- Happens each time
- Onset timing errors

8 cases



# The marine intrusion – HRRR animation



Large-scale pressure gradient, favoring onshore flow, superimposed

What happened on the other days?

# Summertime flow types



Hourly surface  $\Delta$ -pressure traces –  
all June-July-August days, 2016

Near surface:  
Wind speeds  $\sim \Delta$  pressure  
across Cascades



Bidirectional wind  
distribution

# Relate wind speed to pressure difference

## First attempt



Not much correlation...

What happened on the other days?

# 7 Summertime flow types



Hourly surface  $\Delta$ -pressure traces –  
all June-July-August days, 2016

- Marine intrusion
- Weak intrusion (E-W-E)
- Up-ramping day
- Strong westerly flow all day
- Down-ramping day
- Synoptic + diurnal  
modulation (*trough, “cool diel”*)
- No diurnal pattern (‘*misc.*’)  
→ and ...many unclassifiable

# Marine intrusion - example



Time-height cross section – wind speed



# 'East-west-east' (ewe) days: weak intrusions?



*Easterly winds – plotted negative*

# Other types – synoptic: Up; Strong-West; Down



Rotor-layer wind speeds (0-25 m/s) vs. hour (UTC)



Westerly all day: no afternoon minimum

*Minimum daily speed >5 m/s at Arlington or Boardman  
(or both)*

Down-ramping

# Composited wind speed for each category (5 shown here)



*Stay Tuned ... !*

# Wind speed vs. coast-inland pressure diff's



# Relationships to met vrbls



## Relationships to met variables - 2



# Composite NCEP/NCAR Reanalysis Charts

## Diel flows – Intrusions: original 8

Intrsn-8



Strong W



vs. all 92 June-July-August days

All JJA



### Intrusion

- Ridge – 500 mb
- Hot into Idaho ( $T_{925}$ )
- Sfc ridge into BC; thermal trough – SE OR

### Strong westerlies

- Trough at 500 mb
- Cold to Vancouver Is; else  $T_{925} \sim 3\text{-mo mean}$
- Broad sfc LO inland; strong W-E  $\nabla P$  across OR

# HRRR validation – example

**Marine  
Intrusion:  
8-day  
composite**



*Lidar*

*1-h HRRR fcst*

*3-h HRRR fcst*

*Bias*

*RMSE -  
unbiased*

**Marine intrusion occurs  
in HRRR -**

- Shut down too fast
- Happens each time
- Onset timing errors

Banta, R.M., Y.L. Pichugina, W. A. Brewer, and coauthors, 2020: Characterizing NWP model errors using Doppler-lidar measurements of recurrent regional diurnal flows: Marine-air intrusions into the Columbia-River Basin. *Mon. Wea. Rev.*, **148**, 929-953; doi.org/10.1175/MWR-D-19-0188.1

# Summary

**Flows through the complex terrain of the Columbia-River wind-energy corridor are highly controlled by topography (e.g., bidirectional wind distribution)**

**Ridging conditions in summer, including hot daytime temperatures inland:**

- Heating-cooling cycle inland
  - Sea breeze near coast
- Impressed large-scale pressure gradient
- When strong, this combination can produce a regional-scale sea breeze (marine intrusion) intense enough to push through the Cascades and into the Oregon-Washington interior
  - Good for wind energy!
- Challenging forecast for models and forecasters

**Trough conditions:**

- Gap winds controlled by traveling mesoscale trough-ridge systems moving through
- Also a challenging forecast

**Major categories** of summertime flow in this region provide insight into evolution, relevant controlling processes, and forecast model skill for each type.



Thank you,  
*and thanks to our sponsors:*

This work was sponsored by the NOAA/CSL Air Quality Program,  
the NOAA Atmospheric Science for Renewable Energy Program,  
and the U.S. Department of Energy, Wind Energy Technologies Office