

Using spatially contiguous reanalysis data to estimate policy-relevant health effects of extreme heat exposures in New York State

Temilayo E. Adeyeye, PhD New York State Department of Health

99th Annual AMS Meeting

Background

- Global climate is changing rapidly with increasing variability in future temperatures and extreme weather events in most geographic regions (USGCRP, 2018)
- Sparse surface weather observation stations in rural areas of NYS
- Regional National Weather Service (NWS) heat advisory criteria in NYS were based on frequency of heat events estimated by sparse air monitor data

USGCRP, 2018: Impacts, Risks, and Adaptation in the United States: Fourth National Climate Assessment, Volume II [Reidmiller, D.R., C.W. Avery, D.R. Easterling, K.E. Kunkel, K.L.M. Lewis, T.K. Maycock, and B.C. Stewart (eds.)]. U.S. Global Change Research Program, Washington, DC, USA. doi: 10.7930/NCA4.2018..

January 23, 2019

Objectives

- To assess the effect of heat on health using finescale reanalysis data
- To use our findings to better inform policies that protect the health of NYS residents during periods of extreme heat

Methods

Schema for Linkage of Analytic Datasets

Grid ID* Latitude* Longitude* Daily Temperature metrics Date (month, day, year)*	Block group number or ZIP Code* % Pop below poverty % Pop. less than high school level education Other socio-economic variables
Link	ed Analytic Data
ID Number** ICD-9 Code → Case or control Same Day Exposure** Previous Day Exposure**	Two Days Previous Exposure Three Days Previous Exposure** % Pop. below poverty % Less than high school level education Other socio-economic variables
	Latitude* Longitude* Daily Temperature metrics Date (month, day, year)* Link ID Number** ICD-9 Code Case or control Same Day Exposure**

- Study of "triggers" within an individual
- "Case" and "control" component, but information of both components will come from the same individual
- "Case component" = hazard period which is the time period right before the disease or event onset
- "Control component" = control period which is a specified time interval other than the hazard period

Threshold Analysis

- Piecewise linear spline regression
- Knots defining slope changes were sequentially selected at 5°F intervals
- Trigger points
 - Minimum risk temperature (MRT)
 - For heat stress, MRT is defined as the lowest temperature at which the health outcome was observed during the study period.
 - For other outcomes, MRT is the lowest temperature above which a consistent increase in the relative risk was observed.
 - Excess risk temperature (ERT)
 - ERT is defined as the lowest temperature above the MRT at which the lower bound of the 95% confidence interval of relative risk of a particular health outcome was greater than 1.

Results

Risk of Hospitalizations/Emergency Department Visits for Selected Outcomes

Risk of Hospitalizations/Emergency Department Visits for Selected Outcomes

January 23, 2019

Effect modification

- Females were less likely to be hospitalized or visit the emergency room for dehydration-related health issues.
- The risk for effects of heat exposure was highest on days with low ozone and high PM_{2.5} and lowest on days with high ozone and low particulate matter exposures.
- Rural areas of NYS are at as high a risk of heat-related illness as urban areas.

Discussion

- Significant increased risk at lag 0 for heat stress and dehydration; and at lag 1 for renal diseases
 - Risk elevated up to 6-days before admission/ED visit
- Marginal to non-significant increased risk for cardiovascular diseases hospitalizations/ED visits
- Observed effects of heat can start at moderately high values of heat index much below current thresholds for NWS advisories

15

Strengths

- Finer scale exposure data
 - Satellite data vs. air monitoring data
 - The use of a spatially contiguous exposure fields allows estimation of heat effects in small cities, rural and suburban areas that lack dense air monitoring networks
- Case-crossover design
 - Useful in evaluation of short term changes in ambient temperature and risk of acute morbid events
 - Bias due to interindividual variation eliminated

Public Health Implications

- Change in the heat advisory criteria for NYS
 - Effective June 1st, 2018

Limitations

- Use of residential addresses to assign exposure temperatures
 - Personal activities and exposure to indoor temperature not considered
 - Case-crossover design & same-day of the week referent selection help in minimizing bias
- Lack of information on behavioral adaptations such air conditioning use, cooling centers etc.

Future Work

- Assess the impact of lowering the heat advisory threshold on ED visits and hospitalizations for heat-related illnesses
 - Did the number of cases of heat-related illnesses reduce?

Acknowledgment

- Estimating policy-relevant health effects of ambient heat exposures using spatially contiguous reanalysis data (Under Review at *Environmental Health*)
 - **NYSDOH**: Tabassum Z. Insaf, Seema G. Nayak
 - NWS: Neil Stuart, Stephen DiRienzo
 - USRA: Mohammad Z. Al-Hamdan, William L. Crosson
- Other Collaborators
 - NYSDOH: EPHT and BRACE grants
 - New York City Department of Health & Mental Hygiene: Sarah Johnson, Heather Glickman-Eliezer
 - Florida Department of Health: Chris DuClos, Melissa Jordan, Keisha Reid, Kristina Kintziger
 - Florida State University: Jihoon Jung, David Zierden
 - University of Alabama: Maury Estes
 - **USRA**: Muhammad Barik

QUESTIONS?

Contact: <a>Temilayo.Adeyeye@health.ny.gov

This project is funded by NASA ROSES 2013: NNX15AN77G – Using Remote Sensing and Environmental Data to Quantify Social Vulnerabilities to Heat Stress and Strengthen Environmental Public Health Tracking and Heat Mitigation Efforts; supported by CDC's National Environmental Public Health Tracking Program, Federal Award Number U38EH000942

